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Abstract

A complex technical system built of independentaiggble components with constant failure and reqzdés is
examined. The system can operate in either baseergency mode, and its behavior is modeled byese1t
state Markov process. It is demonstrated how tainlsiosed formulas for the state probabilitieshes process
and the so-called importances of individual commbsi¢o the inter-state transitions. Such an impakais
defined as the probability that a component’s failiepair causes a transition between two givetesiaf the
modeling process. The obtained formulas allow tmmate a number of reliability parameters charaziayi
the dynamics of the system’s operation. The obthieeults are illustrated by their application toexemplary
reliability block diagram that can be a model gfaaver supply network, a gas or oil pipeline systetu,

1. Introduction Remark: + denotes the serial connection between

In thi | ¢ built of ind id elements of g &, or e. The failure and repair rates
N thiS paper, a compiex system Dullt otindependen ¢ ey, &, and e can be found from (5) and (6), where
repairable components with constant failure andS:{O 13,01

repair rates is considered. The system can opigrate
either basic or emergency mode, and its functioning

is modeled by a three-state Markov process on the € €3 ey €
state space {0,1,2}. The system is in state 1 if it | A
operates in basic mode, in state 2 if it operates i

emergency mode due to basic mode’s failure, or in €4 es
state O if both modes are failed. The paper’s aito i |

present analytical formulas for the system’'s key -
reliability parameters, derived by the author. € & -

As an example, let us take a small power suppIyF
network whose reliability block diagram (RBD) is
displayed inFigure 1. The boxes denoted,e.,&
represent the network’s components listed below.

igure 1. RBD of a small power supply network.
Arrows show the end of emergency supply pathto e

Let us shortly analyze the network’s functioninghwi
respect to the LPgavhich operates in normal mode
when all elements along the path, @, e, &) or

(e, &, &, &, &, &) are operable. When the normal
mode fails, which can be caused by e.g. a faildire o
& or e, then g is switched to emergency mode by
the transfer switch ingeprovided that all elements
along the path (ee;, &, &) or (e, &, &, &, &, &)

are operable. When the normal mode is restored then
eg Is switched back into normal mode. Obviously, it
can happen that both the normal and emergency
modes are failed, and then a power outage occurs at
es. The functioning of gcan thus be modeled by a

e, — distribution company’s network

&, — renewable source connectedd4o e

e; — low voltage bus bar

e, — low voltage cut-off switch + low voltage cable
line + low voltage cut-off switch

e — load point (LP)

& — transfer switch + low voltage cut-off switch

e, — low voltage cut-off switch + low voltage cable
line + low voltage cut-off

e — load point
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three-state stochastic process on the earlier ekfin
state space.
We now give the outline of the paper. It is compbse

of four main sections numbered 2 through 5 and the

6-th concluding section. In section 2 the Markov
property of the random process modeling the
considered system’s behavior is proved. The
formulas for computing the system’s key reliability
parameters, i.e. the state probabilities and ther-in

state transition intensities of the modeling preces
are derived in sections 4 and 5 for which the
theoretical background is presented in sectionsd®?2 a
3. The considerations of section 5 are based on th

d(x) — the system’s structure function expressirg th
system'’s state in relation to the components’ state

S — the discrete set of the system’s states with th
partial order transferred ks from the partial

order in {0,1}, i.e.
0,y €{0,1}") A (x <y) = @(x) < d(y)

where < anc denote the strong and weak
precedence relations in {0,1and S. We adopt the
usual partial order in {0,1} i.e. x <y if d(x,y)>0
and y— x =1 for each x y;.

€, — direct precedence relation in {078nd S

above given example, but can easily be extended to

the general case. In section 6 it is shown howrothe
parameters, characterizing the dynamics of switchin
between basic and emergency modes, can b
obtained.
Readers in the

interested reliability of power

Z(t) — the system’s state at time t, i.e. Z(IPEX(t))

Z — stochastic process{Z0), where Z= Z(t)
e
Na_p(t) — intensity with which Z changes its state

from a to b at time t (a transition intensity),

distribution systems (such a system serves as an defined as follows:

example here) are referred to [2], while those
needing an insight into the general theory of
reliability — to [1] and [6].

2. General formulasfor thetransition
intensities of a multistate system with two-
state renewable components

Let us consider a multistate complex system
composed of two-state components such that thei

Aa—>b (t) =
= limy,o3-PrlZ(t + A = b | Z(t) =a] (1)

I1..°"(i) — set of binary vectors x such thatX,
®(x)=a, andd(x, 0)=b

O..,°"(i) — set of binary vectors x such that,
®(x)=a, andd(x, 1)=b

l..b(i) — importance of @o a transition between a

failure-repair processes are two-state independent and b, defined as follows:

homogenous Markov chains. The system will be
described by the following characteristics:

{e;, 1<i < n} — set of the system’s components
J={1,...,n} — set of the components’ indices
Ai, Wi — failure and repair rates of e

X; — binary variable representing the state; of.e.
xi=1/x=0 if g is operable/failed

X — vector of the components’ states, X 5.XX,]
{0,1}" — set of binary vectors of length n

[x, 1], [, O] — vector x whose i-th coordinate is set
tolor0O

d(x, y) — number of coordinates in which vectors x
and y differ (the Hamming distance)

Xi(t) — state of gat time t (a random variable)

pi(t), g(t) — state probabilities of &), i.e.
pi(t) = PrX(0=1], q(t) = PrX(t)=0]

X(t) — vector of the components’ states at timeet,
X(t) = [Xa(t),.... Xn(1)]
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Iyop(@) = Pr[Xx e g™
=Pr[X €0

p(@D 1 X; =1]
@ 1x; = 0]

crit
b—a

()

i.e. l,..p(i) is the probability that the failure/repair of
e causes a transition from a to b, given that e
operable/failed.

0 — the “Boolean” sum of real numbers from the
[0, 1] interval, defined as;plp, =p + (1 — R)P2

Remark 1: It was shown in [3] that

Hi

Ai

pi(t) = o + o exp[—(4; + ut] (3)
Aq Aq

qi(t) = 77— exp [— (A + wi)t] 4

Remark 2: If XI,. ™(i) then we say that x is
critical to the transition from state a to b caubkgd
e’s failure. If, in turn, XJ©, ,""(i) then we say that
X is critical to the transition from state a to dused
by €'s renewal. These notions of criticality are
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generalizations of a path-vectors’ or a cut-vectors practical situations, then the probability that a
criticality for a two-state system (see [1]). Clgaif component fails when another component undergoes
X0 ™(i), then [x, Q0O ™). repair is close to zero. Moreover, if there aréeast

two maintenance teams, then repairs of two (or
Remark 3: 1.4(i) is a generalization of the Birnbaum more) components can be performed simultaneously,
importance for a two-state system. Various types off (notwithstanding the small failure rates) a

components’ importances in  multi-component component fails while another one is under repair.
systems are discussed in [5]. consequence, the system’s functioning can be

approximately described by n independent two—state
Now the main result of this section, which is a Markov chains, each being the failure-repair preces

theorem giving the expressions for the transitionof the respective component. Such approach directly
intensities of the process Z, will be formulated. leads to the construction of a Markov chain with 2
states. Nevertheless, it occurs that in order tdaho

Theorem 1. Let a,iJS, a&b. ThenA,.,>0 only if  the system’s functioning as perceived by a user the
a< b or a3b, which means that direct transitions Number of states can be greatly reduced. Such a

between a and b are only possible if one directlymodel will be constructed in this section. In thexin
precedes the other. If a b then we have: section formulas for the transition intensitiestlo¢

respective Markov chain will be derived.

) To begin with, a detailed model of the considered
system is presented Figure 2 in the form of inter-
state transitions diagram. The meanings of indiaidu

Apsa(t) = ;Zie,lipi(t)lm_)b(i, t) (6) states are given below the figure. This model takes

Pr(Z(t)=b] ) . : D )
into consideration each situation that can arise as
consequence of the fact that the system has two
modes of operation.

1 .
Agop(t) = WZ‘E’ 1iqi () gop (i, 1)

Proof. The proof will appear in the extended version
of this paper, being prepared for publication.

Remark: the formulas (5) and (6) are generalization A
of the analogous ones which can be found in [3] and >
[4].
He As
An important conclusion can be drawn from
Theorem 1. If & is a structure function, and the
partial order in S is transferred Iy from {0,1}", As
then Z is a Markov process with the transition He
intensities given by (5) and (6). Indeed, it can be

easily shown that Pr[Z(t)=a], Pr[Z(t)=b], ang. i(i), Hs N\ Y:
i00J are functions offt), hence these intensities are r Q’/ 2
functions of t, and do not depend on the historg of )

before time t. Also, they converge to constant ealu Figure 2. The detailed model of the system’s
as t-, because iff) converges top/(A+w) as opPeration

t- o0, Z is thus asymptotically homogenous.

3 — both modes are operable, BM is active (EM has
been switched to BM)

3’ — both modes are operable, EM is active

A key assumption about the considered system {s thal — BM is active, EM is under repair

its components are independent, i.e. the time-tod’— BM is operable and inactive, EM is under repai

failure (TTF) and time-to-repair (TTR) of any 2—BM is under repair, EM is active

component do not depend on any other component’®’ — BM is under repair, EM is operable and inagtiv

TTF or TTR. Clearly, this assumption may seemO — both modes are failed, BM is under repair, EM i

doubtful, because a component has to wait for repai awaiting repair

if all maintenance teams are busy repairing othei0’ — both modes are failed, EM is under repair, BM

failed components, in which case the dependence of is awaiting repair

the component's TTR on the TTRs of other

components is evident. However, if the components'Clearly, the stochastic process illustratedrigure 1

failure rates are very small compared to their irepa has the Markov property if the sojourn times inteac

rates, i.e.\; <<p;, i0J, which is often the case in state is exponentially distributed. However,

3. A Markov model of atwo-mode system
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Theorem1 cannot be applied here, because thein {0,1}", is given by the following relations: Q 4,
process’s state space is not an image of {Ofa 0<2,1<3, 2<3. We can thus find the inter-state
any function defined on {0,1} In particular, the transition intensities by applyiritheorem 1.

transition from 1’ to 1, 2’ to 2, or 3' to 3 is nah Let us note that a user may not distinguish between
effect of a component’s state change, but that othe states 1 and 3, because in both cases thensyste
switching between basic and emergency modes. operates in basic mode, and a transition between 1
When there are two or more maintenance teams theand 3 does not cause a break in the system’s
repair of either mode can start immediately after i operation, noticeable to a user. Thus our model can
failure, and the states 0’ and 0 can be merged intde further simplified, by merging the state 3 with
one state — 0. The resulting diagram is presemted ito the model presented Figure 5.

Figure 3, and the remark regarding the application of

Theorem 1 still holds.

%@D\g :>_ Figure5. The three-state model

The state space of the process illustrateligure 5

is given by S =({0,1}") = {0,1,2}, where® is the

respective structure function. The partial ordeSin

transferred from that in {0,1} is given by the

following relations: 0 §1, 0 < 2, 2 1. Thus, as in
Figure 3. The model assuming no waiting times the previous case, we can applyeorem 1 in order

to find the inter-state transition intensities, arhwill
Let us note that the transition chain-3'-2 is  be done in the next section.
perceived by a system’s user as the direct transiti We conclude this chapter with a remark relevant to
3-2, i.e. from basic to emergency mode. Similarly, possible applications of the presented model. it ca
the transition chain 23 -3 is perceived as the be assumed that the switching between basic and
direct transition 2.3, i.e. from emergency to basic €mergency modes is done instantly, i.e. times of
mode. Further’ the transition chains- 0 -1 and transitions 1. 1, 2’ 2, and 3- 3 are much shorter
0-2' -2 are perceived as the direct transitions10 than the remaining transition times. Thus, in the
and 0 2 respectively. In consequence, from a user'sthree-state model, the transitions 2 and 2.1 are
viewpoint, each of the states 1’, 2', and 3’ can peassociated W|th short breaks in the sy;tem operatio
merged with the state 1, 2, or 3, respectively. Then turn, the sojourn in state O is perceived asrag |
resulting diagram is shown Figure 4. break, because it involves restoring and activating

basic or emergency mode.

4. Formulasfor thetransition intensities of

thethree-state system

In this section, let Zbe the three-state process

illustrated in Figure 5. Let also Kt) = Pr[Z(t)=s],
\GD/ s[{0,1,2}. We will now derive formulas for the

transition intensities of Z. This task will be made

easier by using the intensities of transitionsved-t
, state processes obtained from Z by aggregating the
Figure4. The four-state model states 0+2 or 1+2. For simpler notation, we willitom

o ) ) the variable t where no confusion arises. These
As each transition involves a failure or repairadf ;hiensities are defined as follows:

least one component, the state space of the process

illustrated inFigure 4 is given by S =({0,1}") = Aorz(t) =
={0,1,2,3}, where ® is the respective structure

function. The partial order in S, transferred frtrat
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= lim, o 3 PrZ(t + u) € {0,2}|2(t) = 1] @)
Agi251(t) =
= lim,o 3 PrlZ(t + u) = 1|Z(t) € {0,2}] (8)
A1yz50(t) =
= lim,o 3 PrlZ(t + u) = 0|Z(t) € {0,2]] 9)

Nos142(8) =

= lim,o 3 PrZ(t + u) € {1,2}|z() = 0] ~ (10)

where + is the aggregation operator. The definition
of a component’'s importance to an inter-state

transition yields:
Lio42(0) = Pllpl:l - P1|pl-:o (11)
Ii4200(0) = P1+2|pi=1 - P1+2|pi=0 (12)

where 0J, and R.(t) = Pr[Z(t)0{1,2}] = Pa(t)+Px(t).
From (5) and (6) we obtain:

1 )

Nioo42 = P_12ies Aipilis042(0) (13)
1 )

Noyzo1 = Py Yies Uiqilio04+2(0) (14)
1 )

Niyon0 = Piea YiesAiPili1260(0) (15)

1 )
Nos142 = mZies Kiqil14200(0) (16)

The transition intensities of Z will be expressaihg

Ays042 = A10 + A1 (19)

Aot251 = % (20)
where B(t) = Pr{Z(t)=0] = 1 — R(t) — P(t). From
(19) and (20) we have:

Ao =A1042 — A1 (21)

A0_>1 — Agt2-51(Po+Py)—As1 P, (22)

Py

It now remains to computd,_, andAq_,. By the
same argument as just used we obtain:

Noos142 = Moo + Mgz (23)
AqooPy+Ay P
Rusgg = Daalrthscols 24

The equalities (23) and (24) yield:

Aosz = N1z — Ao (25)
Mgy = A1+z—>o(P1;:z)-A1_>oP1 (26)

where Ag_1 and A\y_o are given by (22) and (21)
respectively.

As can be seen, all transition intensities of Z are
expressed byR), Py(t), and |..q(i,t), iCdJ, which, in
turn, are functions of;ft), il]J. Z is thus a Markov
chain with time-dependent transition intensities. A
follows from (3), each ft):i0J converges to
Hi/(Ai+Hi) as t-o, hence each\,_(t): a,d3{0,1,2}
converges to a constant value. In consequence, Z is
asymptotically homogenous.

A method to find Rt), Px(t), and .. »(i,t), iClJ, which
have to be known in order to use the formulas

those defined by (13)-(16), and the importances(17)-(18), (21)-(22), and (25)-(26), is presentedhe
I, (i), i0J. However, the latter are not given by next section 5.

formulas as simple as (11)-(12). This is due to the

fact that Z is not a two-state process. A method ta3. Computing P, P2, and I 1,2 for the

compute {_,(i), i0J will be presented in the next exemplary system

section.
As 2 ¢ 1, from (5) and (6) we get:

1
Ay g = P_ZZiEI wiqili1c2 (17)

1
Ao = P—lzz'ez Aipili oz (18)

From (7), (8), and the law of total probability it

follows that:
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As can be expected, the method to compute the state
probabilities R and B, and the importances
I1.2(i), i00J is based on analyzing the system’s RBD.
This method will be illustrated using the RBD oéth
exemplary system, shown kigure 1.

We will first find the formulas for Pand B. Let us

note that the events ¢x0}, {xs=1,%=0},
{xe=1, %=1, =0}, {Xe=1, %=1, %=1, %=0},...,
{xe=1,..., %=1, %=0}, and {x=1,..., %=1, %=1} are
disjoint and exhaustive. From the law of total
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probability and the rules for computing the

reliabilities of series-parallel systems, we obtain
P14 = [ q7(p1P3Ps V P2)PsPs

+ p793(P2P5Ps)
+ P7P394(P1 V P2P5P6)
+ P7P3Paqs(p1)
+ D7P3P4Psq6(P1 V D2)

+ p7P3PaPsPs(P1 VD2) ] - D8 (27)

Reversing the order of components in the first [1—2(1) = P7P3aP2PsPePs

“Boolean” sum, and transforming all the “Boolean”
sums using the definition of the operatdr we
obtain:
P14z = [q7(p2 + q201P3P4)PsPs
+ p,q50,D5D¢
+P7p3q4(P1 + q1P2P5P6)
+ P;P3P445P,
+P7p3Paps(P1 + 41P2) ] - s (28)
From (28) and the RBD iRigure 1 it follows that:

Py = [ p71394(p1)
+ P7P3D4q5P1

+ p703P4s (D1 + q1P2) | - Ds (29)
P, = [ q7(p2 + q201P3P4)DsPs

+ D793P2P5P6

+ D7P39491P2Ps5D6 | * Ps (30)

We now pass to the computation af Ai). As

which are “closed” before's repair. If so, the
component (after the removal of the variahleagd a
possible further modification) is added to the
expression foryl, (i). Clearly, in order to obtain this
expression, the variable gas to be deleted from
each selected component of, Fas |.(i) is a
conditional probability provided that=0.

For i=1 the selected component {©40140:1P2PsPePs-

As it contains the variables,[p;, and g, the repair

of e, opens the basic path (1,3,7,8), hence

(32)

For i=2 the selected component i1 PsP4PsPePs-
However, the repair of,edoes not open any basic
path due to the presence of tp the analyzed
component, hence

[152(2) =0 (33)
For i=3 the selected component ig}4p,pspePs. The
repair of @ opens (1,3,7,8) provided that és
operable, or (2,5,4,3,7,8) provided thatseoperable.
We thus have

I1,2(3) = P702PsP6Ps(P1 V P4)

= P7P2PsPePs(P1 + q1P4) (34)
For i=4 the selected component 0401 P2P5PsPs-
The repair of g opens (2,5,4,3,7,8) (note that it
cannot open (1,3,7,8) due to the presence pf q
hence

I1,,(4) = P7P3G1P2P5P6Ps (35)

For i=7 the selected components are;Bspsps and
0702P1P3P4PsPsPs- IN case of the first component, the

2 <1, transitions from 2 to 1 are triggered by repair of @ opens (1,3,7,8) ifieand g are operable,

components’ repairs. From the RBD Hkigure 1 it

or (2,5,4,3,7,8) if gand g are operable. In case of

can be seen that (1,3,7,8) and (2,5,4,3,7,8) a&e ththe second component the repair pbpens (1,3,7,8)

basic minimal path-sets, and (2,5,6,8)

andonly (due to the presence gf gin consequence

(1,3,4,5,6,8) are the emergency minimal path-sets.

Let us note that if(i{5,6,8} then ¢ belongs to the
both emergency path-sets, which meansdifa) # 2
if x;=0. In consequena®,_.,*"(i) = O, and

For i(}{1,2,3,4,7} the formula for 4_,(i) is obtained
by first selecting those components in the expoessi

I12(7) = p20sPeps(P1 + q1P4)D3

+ q,p,D30,P<DgPg (36)
6. Conclusion

A method to compute the state probabilities and
inter-state transition intensities for a complestsyn

operating according to a three-state Markov model
has been presented. This method, appropriately

state is 2) corresponds to one such component. Th odified, can be ap_plled to a broad spectr'um of
for each selected component it is checked if the arkov-modeled mL_1|t|-state systems. In particular,
repair of e “opens” at least one basic path, all of the systems that fulfill the assumptionsToeorem 1

are eligible. The computation of state probabdgitie

for P,, which contain the variable.deach vector x
such that x0 (g is failed) andd(x)=2 (the system’s
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and transition importances was presented in sebtion

for the exemplary system, but it can easily be

generalized to any system whose each path-set

(obtained from its RBD) corresponds to one of the

system’s modes of operations (or states).

The key reliability parameters, i.e. the interstat

transition intensities can be used to obtain other

characteristics of the system’s behavior. Let uspad
the following definitions:

L; — the mean sojourn time in the staté}{gd,1,2}

N, .«(u) — the mean number of times the system
changes its state from j to k in a time interval of
length u.

N'®(u) — the average number of long brakes in the
system’s operation, resulting from failures of the
both modes

N™"(u) — the average number of short breaks in the
system'’s operation, caused by switching between
the both modes

It can be simply shown that

Lj = (Zketonzyieni o) (37)
N (W) = udiAj (38)
N"%(u) =Ny _o(u) + Ny o(U) (39)
N (u) = Ny o(u) + N;_4(u) (40)

The above defined characteristics are particularly
important for the reliability analysis of power
distribution networks.

References

[1] Barlow, R. E. & Proschan, F. (1975} atistical
Theory of Reliability and Life Testing. Probability
Models. Holt Rinehart and Winston, Inc., New
York.

[2] Chowdhury, A. & Koval, D. (2009).Power
Digtribution  System  Reliability:  Practical
Methods and Applications. John Wiley & Sons.

[3] Karpinski, J. & Korczak, E. (1990Methods of
reliability assessment for two-state technical
systems. (in Polish) Omnitech Press, Warszawa.

[4] Korczak, E. (2007). New formula for the
failure/repair frequency of multi-state monotone
systems and its applicationsControl and
Cybernetics 36, 219-239.

[5] Kuo, W. & Zhu, X. (2012)Importance Measures
in Reliability, Risk, and Optimization. John Wiley
& Sons.

[6] Lisnianski, A. et al. (2010)Multi-State System
Reliability Analysis and Optimization for
Engineers and Industrial Managers. Springer.

95



Malinowski Jacek
A Markov model of a complex technical system operating in basic and emergency modes

96



