Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Path planning is one of the most important problems in mobile robotics. Particularly challenging in selecting an appropriate path planning method is the choice of a method for complex obstacle configurations. The problems of path planning, among many other methods, come into play with approaches based on the application of potential fields methodology based on physical anomalies with gravitational or electromagnetic fields. This idea makes it possible to navigate in complex maps. The idea of applying these fields in terms of rough mereology was developed by Polkowski and Ośmialowski (2008), who introduced the method of the mereological potential field in the framework of mereological spatial reasoning. This particular work is one of a series of extensions of this method where our final goal is to apply the idea of path planning in a 3D environment. To this end, we are preparing and testing our own library for controlling mobile robots, improving the real-time path planning capability and implementing a set of algorithms for practical testing.
Rocznik
Tom
Strony
45--57
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710 Olsztyn, Poland
autor
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710 Olsztyn, Poland
autor
- Security Team, Elympics, Plac Europejski 1, 00-844 Warsaw, Poland
Bibliografia
- [1] Arkin, R.C. (1998). Behavior-Based Robotics, MIT Press, Cambridge.
- [2] Åström, K.J. and Hägglund, T. (1995). PID Controllers: Theory, Design, and Tuning, International Society of Measurement and Control, Research Triangle Park.
- [3] Brooks, R. (1986). A robust layered control system for a mobile robot, IEEE Journal on Robotics and Automation 2(1): 14-23.
- [4] Brauer, M. and Rouneau, A. (2025). Detection of Hamming markers for OpenCV in Phyton, https://github.com/DebVortex/python-ar-markers.
- [5] Cybowski, W. (2025). Library for smart element hub cube lego robot inventor kit, https://github.com/wcyb/le_mind_controller.
- [6] Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A. and Burgard, W. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge.
- [7] Gnyś, P. (2017). Mereogeometry based approach for behavioral robotics, in L. Polkowski et al. (Eds), Rough Sets: International Joint Conference, Lecture Notes in Computer Science, Vol. 10314, Springer, Berlin/Heidelberg, pp. 70-80.
- [8] Hwang, Y.K. and Ahuja, N. (1992). Gross motion planning - A survey, ACM Computing Surveys 24(3): 219-291.
- [9] Kavraki, L.E., Svestka, P., Latombe, J.-C. and Overmars, M.H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation 12(4): 566-580.
- [10] Latombe, J.-C. (1991). Robot Motion Planning, Kluwer Academic Publishers, Dordrecht.
- [11] LaValle, S.M. (2006). Planning Algorithms, Cambridge University Press, Cambridge.
- [12] OpenCV (2025). OpenCV computer vision library, https://opencv.org/.
- [13] Ośmiałowski, P. (2011). Planning and Navigation for Mobile Autonomous Robots: Spatial Reasoning in Player/Stage System, Polish-Japanase Academy of Information Technology, Warsaw.
- [14] Polkowski, L. and Ośmiałowski, P. (2008). A framework for multiagent mobile robotics: Spatial reasoning based on rough mereology in player/stage system, in C.-C. Chan et al. (Eds), Rough Sets and Current Trends in Computing: 6th International Conference, Springer, Berlin/Heidelberg, pp. 142-149.
- [15] Polkowski, L. and Skowron, A. (1996). Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning 15(4): 333-365.
- [16] Polkowski, L., Zmudzinski, L. and Artiemjew, P. (2018). Robot navigation and path planning by means of rough mereology, 2nd IEEE International Conference on Robotic Computing, Laguna Hills, USA, pp. 363-368.
- [17] Raj, R. and Kos, A. (2022). A comprehensive study of mobile robot: History, developments, applications, and future research perspectives, Applied Sciences 12(14): 6951, DOI: 10.3390/app12146951.
- [18] Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289-301, DOI: 10.34768/amcs-2021-0020.
- [19] Szpakowska, A. (2025a). Rough mereology potential field 2D algorithm, https://github.com/aleksandraszpakowska/Recognition_opencv.
- [20] Szpakowska, A. (2025b). Path planning using rough mereological potential field: Project demonstration, https://www.youtube.com/watch?v=hUHCbkKCDpY.
- [21] Szpakowska, A., Artiemjew, P. and Cybowski, W. (2023). Navigational strategies for mobile robots using rough mereological potential fields and weighted distance to goal, in A. Campagner et al. (Eds), International Joint Conference on Rough Sets, Springer, Berlin/Heidelberg, pp. 549-564.
- [22] Zmudzinski, L. and Artiemjew, P. (2017). Path planning based on potential fields from rough mereology, Rough Sets: International Joint Conference, IJCRS 2017, Olsztyn, Poland, pp. 158-168.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-916d2e55-ebcf-4bbd-bb8f-b41a07b1d1fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.