Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza błędów i uchybów w trójpasmowej interferometrii różnicowej
Języki publikacji
Abstrakty
The three pass differential interferometry technology is an important means of ground deformation monitoring, which has been successfully used in the large ground deformation monitoring and research such as the earthquake, volcano activity, glacial drift, landslides, and city settlement etc. However the technology is affected by multiple errors in practical application, which have serious influence on the deformation monitoring precision. For spaceborne radar, this paper derives the error propagation coefficients of the baseline error, the phase error, the atmospheric delay error and the earth curvature error and other types of errors on the three pass differential interferometry base on the [three pass differential interferometry] principle, and analyses the characteristics of these errors, finally discusses the influence rules of the errors on three pass differential interferometry.
Artykuł dotyczy zagadnienia trójpasmowej interferometrii różnicowej, jako narzędzia do monitorowania deformacji gruntu w przypadku trzęsień ziemi, aktywności wulkanicznej itp. Na potrzeby radarów znajdujących się na orbicie kosmicznej, wyznaczono współczynnik propagacji błędów, typowych w tego rodzaju pomiarach (błąd fazowy, opóźnienie w atmosferze, zakrzywienie powierzchni Ziemi). Opisano mechanizm wpływu obecności tych błędów i uchybów na wynik działania metody.
Wydawca
Czasopismo
Rocznik
Tom
Strony
236--240
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; School of Municipal and Surveying Engineering, Hunan City University, Yiyang, Hunan 413000, China
autor
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079
autor
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
autor
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
Bibliografia
- [1] Zebker H A and Goldstein RM, “Topographic mapping from Interferometric Synthetic Aperture Radar observations”, Journal of Geophysical Research, 1986, 91, pp.4993-4999.
- [2] Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner, “on the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake”, J. Geophys. Res., 1994, 24, pp.19617-19634.
- [3] Goldstein. “Atmospheric Limitations to Repeat-track Radar Interferometry”. Geophys. Res. Lett., 1995, 22, pp.2517-2520.
- [4] LI Zhenghong, LIU jingnan, XU Caijun. “Error Analysis in INSAR Data Processing”. Journal of Wuhan University (Information Science Edition), 2008, 6, pp.35-36. (In Chinese)
- [5] Massonnet D and Feigl KL. “Radar interferometry and its application to changes in earth’s surface”. Reviews of Geophysics, 1998, 36, pp.423-431.
- [6] Graham LC. “Synthetic interferometer radar for topographic mapping”. Proc. IEEE, 1972, 62, pp.763-768.
- [7] Wang Hua. “The error analysis of InSAR atmospheric delay”. The spatial information, 2009, 7, pp.9-11. (In Chinese)
- [8] Rosen PA, Hensley S, Joughin I R, et al. “Synthetic Aperture Radar Interferometry”. Proceeding of the IEEE, 2000, 88, pp.333-382.
- [9] Massonnet D, Feigl KL. “Radar Interferometry and Its Application to Changes in the Earth's Surface”. Rev. Geophys. , 1998, 36, pp.441-500.
- [10] Massonnet D, Feigl KL, Rossi M, et al. “Radar Interferometric Mapping of Deformation in the Year after the Landers Earthquake”. Nature. 1994, 369, pp.227-230.
- [11] Goldstein RM, Werner CL., ”Radar interferogram filtering for geo-physical applications”. Geophys Res Lett. 1998, 25, pp.4035–4038.
- [12] F. K. Li and R. M. Goldstein. “Studies of multi baseline spaceborne interferometric synthetic aperture radars”, IEEE Trans. Geosci. Remote Sensing. 1990, 28, 88-97.
- [13] Massonnet D, Feigl KL. “Radar interferometry and its applications to changes in the earth’s surface”. Rev Geophys, 1998, 36, pp.441–500.
- [14] H. A. Zebker and R. M. Goldstein. “Topographic mapping from interferometric synthetic aperture radar observations”. J. Geophys. Res. 1986, 91, 4993-4999.
- [15] A. K. Gabriel and R. M. Goldstein. “Crossed orbit interferometry: Theory and experimental results from SIR-B”. Znt. J. Remote Sensing. 1988, 9, 857-872.
- [16] I. Cumming, D. Hawkins, and L. Gray. “All-weather mapping with interferometric radar”. In Proc. 23rd Int. Symp. On Remote Sensing Environment, Bangkok, Thailand.1990, 23, 1249-1262.
- [17] E. Rodriguez and J. M. Martin. “Theory and design of interferometric synthetic aperture radars”. Proc. Inst. Elec. Eng. 1992,139, pp.147-159.
- [18] H. A. Zebker, S. N. Madsen, J. Martin, K. Wheeler, T. Miller et al. “The TOPSAR interferometric radar topographic mapping instrument”. IEEE Trans. Geosci. Remote Sensing.1992, 30,933-940.
- [19] A. L. Gray and P. J. Farris-Manning, “Repeat-pass interferometry with airborne synthetic aperture radar”. IEEE Trans. Geosci. Remote Sensing. 1993, 31, pp.186-191.
- [20] Johnson, S., H. Zebker, P. Segall, and F. Amen lung. “Fault slip dis-tribution of the 1999 Mw 7.1 Hector Mine earthquake, California, estimated from satellite radar and GPS measurements”, Bull. Seismol. Soc. Am.2002, 92, 1377-1389.
- [21] Massonnet, D., and K. L. Feigl. “Radar interferometry and its application to changes in the earth’s surface”, Rev. Geophys. 1998, 36, pp. 441-500.
- [22] Okada, Y, “Surface deformation due to shear and tensile faults in a half-space”, Bull. Seismol. Soc. Am.1985, 75, pp.1135-1154.
- [23] Yoon YT, Eineder M, Yague-Martinez N, Montenbruck O. “Terra-SAR-X precise trajectory estimation and quality assessment”. IEEE Trans Geosci Remote Sens. 2009, 47, 1859–1868.
- [24] ZEBKER, H.A. and GOLDSTEIN, R.M. “Topographic mapping from interferometric synthetic aperture radar observations”. J Geophys Res. 1986, 91, 4993-4999.
- [25] LI, F.K , and GOLDSTEIN, R. “Studies of multi baseline spaceborne interferometric synthetic aperture radars”. IEEE Tram 1990, 28, 88-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-916831bd-d24d-4e4a-87fb-1b919c6c5544