PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of tool model on result of finite element simulation of high speed machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza oddziaływania modelu narzędzia na symulację numeryczną MES procesu skrawania z dużą prędkością (HSM)
Języki publikacji
EN
Abstrakty
EN
The finite element method has been extensively used for the simulation of manufacturing processes and especially machining. In this paper, finite element models of high speed machining are presented. More specifically, orthogonal and oblique cutting models are presented, where the geometrical and material properties of the cutting tool are investigated. Orthogonal models pertain to the simulation of cutting with three different CBN tool types. Chip formation, cutting forces and temperatures are compared for each model, at the same cutting conditions. Additionally, 3D models are presented, where the back rake angle of the cutting tool is varied. From the results it may be concluded that 3D models provide more realistic results but they are computationally more demanding than 2D models. Finite element modelling of high speed machining can provide data for the process that would be either difficult or in some cases even impossible to obtain through extensive experimental work.
PL
W artykule określono oddziaływanie geometrii narzędzia na wyniki symulacji numerycznej skrawania z dużą prędkością. Przeprowadzono symulację numeryczną dla skrawania ortogonalnego 2D, dla trzech modeli narzędzi z CBN o różnej geometrii. Porównano podział modeli numerycznych narzędzi na elementy skończone oraz przedstawiono analizę procesu kształtowania wióra, wartości składowych siły skrawania, temperaturę w strefie skrawania oraz odkształcenie plastyczne w warstwie wierzchniej dla wybranych ich geometrii. Przeprowadzono również proces symulacji dla modelu skośnego 3D dla różnych wartości kąta pochylenia krawędzi skrawającej. Wyniki symulacji pozwoliły stwierdzić, że zastosowanie modeli 3D lepiej odzwierciedla rzeczywisty proces. Stawia jednak większe wymagania w zakresie obliczeń niż przy użyciu modeli 2D. Symulacja MES obróbki z dużą prędkością pozwoliła uzyskać wyniki, które mogą być trudne lub w niektórych przypadkach niemożliwe do uzyskania w ramach badań eksperymentalnych.
Rocznik
Strony
23--35
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • National Technical University of Athens, School of Mechanical Engineering, Section of Manufacturing, Technology, Heroon Politechniou 9, 15780, Athens, Greece
autor
  • Rzeszów University of Technology, 12 Powstańców Warszawy Str., 35-959 Rzeszów, Poland
  • National Technical University of Athens, School of Mechanical Engineering, Section of Manufacturing, Technology, Heroon Politechniou 9, 15780, Athens, Greece
  • National Technical University of Athens, School of Mechanical Engineering, Section of Manufacturing, Technology, Heroon Politechniou 9, 15780, Athens, Greece
Bibliografia
  • [1] H. SCHULZ, T. MORIWAKI: High-speed machining. Annals of the CIRP, 41(1992)2, 637-643.
  • [2] J.F. TU, M. CORLESS: Review of sensor-based approach to reliable high speed machining at boeing – A tribute to Jan Jeppsson. High Speed Machining, 1(2014), 1-17.
  • [3] E.M. TRENT, P.K. WRIGHT: Metal cutting. Butterworth-Heinemann, Woburn 2000.
  • [4] B.P. ERDEL: High-speed machining. Society of Manufacturing Engineers, Dearborn 2003.
  • [5] A.G. MAMALIS, J. KUNDRÁK, A. MARKOPOULOS, D.E. MANOLAKOS: On the finite element modeling of high speed hard turning. International Journal of Advanced Manufacturing Technology, 38(2008)5-6, 441-446.
  • [6] M. NOUARI, A. GINTING: Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surface and Coatings Technology, 200(2004) (18-19), 5663-5676.
  • [7] H. SCHULZ, T. MORIWAKI: High-speed machining. Annals of the CIRP, 41(1992)2, 637-643.
  • [8] G.M. ROBINSON, M.J. JACKSON: A review of micro and nanomachining from a materials perspective. Journal of Materials Processing Technology, 167(2005), 316-337.
  • [9] G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. Annals of the CIRP, 52(2003)2, 483-507.
  • [10] W. GRZESIK: Advanced machining processes of metallic materials: Theory, modelling and applications. Elsevier, Oxford 2008.
  • [11] J. TLUSTY: High-speed machining. Annals of the CIRP, 42(1993)2, 733-738.
  • [12] A.P. MARKOPOULOS: Finite element method in machining processes. Springer, London 2013.
  • [13] A.P. MARKOPOULOS, K. KANTZAVELOS, N. GALANIS, D.E. MANOLAKOS: 3D Finite element modeling of high speed machining. International Journal of Manufacturing, Materials and Mechanical Engineering, 4(2011)1, 1-18.
  • [14] A.P. MARKOPOULOS, K. KANTZAVELOS, N. GALANIS, D.E. MANOLAKOS: 3D Modeling of precision high speed turning and milling for the prediction of chip morphology using FEM. Journal of Machining and Forming Technologies, 3(2011)3/4, 149-162.
  • [15] A. ATTANASIO, E. CERETTI, S. RIZZUTI, D. UMBRELLO, F. MICARI: 3D finite element analysis of tool wear in machining. CIRP Annals – Manufacturing Technology, 57(2008)1, 61-64.
  • [16] M.P. BABU, B.S. PRASAD: Prediction of vibration induced displacement and its effect on tool wear in turning using 3D finite element simulation. Journal of Production Engineering, 17(2014)2), 47-52.
  • [17] T.D. MARUSICH, M. ORTIZ: Modelling and simulation of high-speed machining. International Journal for Numerical Methods in Engineering, 38(1995), 3675-3694.
  • [18] T. ÖZEL, T. ALTAN: Process simulation using finite element method – prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. International Journal of Machine Tools and Manufacture, 40(2000), 713-738.
  • [19] M. BÄKER: Finite element simulation of high-speed cutting forces. Journal of Materials Processing Technology, 176(2006), 117-126.
  • [20] C. HORTIG, B. SVENDSEN: Simulation of chip formation during high-speed cutting. Journal of Materials Processing Technology, 186(2007), 66-76.
  • [21] J.P. DAVIM, C. MARANHÃO, M.J. JACKSON, G. CABRAL, J. GRÁCIO: FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. International Journal of Advanced Manufacturing Technology, 39(2008), 1093-1100.
  • [22] S.A. IQBAL, P.T. MATIVENGA, M.A. SHEIKH: Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel. International Journal of Machining and Machinability of Materials, 3(2008) 1/2, 18-32.
  • [23] C.Z. DUAN, T. DOU, Y.J. CAI, Y.Y. LI: Finite element simulation and experiment of chip formation process during high speed machining of AISI 1045 hardened steel. International Journal of Recent Trends in Engineering, 5(2009) 1, 46-50.
  • [24] D.W. TANG, C.Y. WANG, Y.N. HU, Y.X. SONG: Finite-element simulation of conventional and high-speed peripheral milling of hardened mold steel. Metallurgical and Materials Transactions A, 40A(2009), 3245-3257.
  • [25] J.S. STRENKOWSKI, J.T. III CARROL: Finite element models of orthogonal cutting with application to single point diamond turning. International Journal of Mechanical Sciences, 30(1986), 899-920.
  • [26] H.A. KISHAWY, R.J. ROGERS, N. BALIHODZIC: A numerical investigation of the chip-tool interface in orthogonal machining. Machining Science and Technology, 6(2002), 397-414.
  • [27] F. KLOCKE, H.-W. RAEDT, S. HOPPE: 2D-FEM simulation of the orthogonal high speed cutting process. Machining Science and Technology, 5(2001), 323-340.
  • [28] V. MADHAVAN, A.H. ADIBI-SEDEH: Understanding of finite element analysis results under the framework of Oxley’s machining model. Machining Science and Technology, 9(2005), 345-368.
  • [29] P. NIESŁONY, W. GRZESIK, P. LASKOWSKI, W. HABRAT: FEM-Based modelling of the influence of thermophysical properties of work and cutting tool materials on the process performance. Procedia CIRP, 8(2013), 3-8.
  • [30] F.Z. FANG, H. WU, X.D. LIU, Y.C. LIU, S.T. NG: Tool geometry study in micromachining. Journal of Micromechanics and Microengineering, 13(2003), 726-731.
  • [31] J.B. SAEDON, A. HAKIM, A. HALIM, H. HUSAIN, M.S. MEON, M.F. OTHMAN: Influence of Cutting Edge Radius in Micromachining AISI D2. Applied Mechanics and Materials, 393(2013), 253-258.
  • [32] P. NIESŁONY, W. GRZESIK, R. CHUDY, W. HABRAT: Meshing strategies in FEM simulation of the machining process. Archives of Civil and Mechanical Engineering, 15(2015), 62-70.
  • [33] T. ÖZEL: Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. Journal of Materials Processing Technology, 141(2003), 284-293.
  • [34] V.P. ASTAKHOV: On the inadequacy of the single-shear plane model of chip formation. International Journal of Mechanical Sciences, 47(2005), 1649-1672.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-916767fa-0540-4620-9e91-2d1e418facac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.