PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept and prototype of the safety system for pedestrians and cyclists in the immediate vicinity of larger vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Koncepcja i prototyp systemu bezpieczeństwa dla pieszych i rowerzystów w bezpośrednim otoczeniu pojazdów o większych gabarytach
Języki publikacji
EN
Abstrakty
EN
The article presents selected methods and technical solutions currently used to warn and inform road users about the possibility of a pedestrian-driver collision situation. The solutions available on the market do not provide solutions for the transmission of two-way information in the pedestrian-driver relationship for systems built on large-size vehicles. Possible detection devices are presented along with their evaluation, and additionally the research process confirming the validity of the adopted approach in relation to the created system is presented. A prototype of the System supporting the safety of vulnerable road users in the vicinity of large-size vehicles was also presented, meeting the assumptions regarding informing both drivers approaching large-size vehicles located in bus bays, sensitive places where pedestrians and cyclists are hit. The presented system stands out from among the generally available systems for increasing the safety of pedestrians and cyclists. The biggest innovation of the system is the introduction of the possibility of communication between users around large-size vehicles, the ability to transmit information to the outside to both drivers and pedestrians without having to engage the attention of the driver of the vehicle on which the system is built, which can significantly increase the chances that at the time of a potential dangerous situation, one of the parties will react correctly and thus no accident will occur. The article describes publicly available solutions as well as an innovative safety system for pedestrians and cyclists around large-size vehicles.
PL
W artykule przedstawiono wybrane metody i rozwiązania techniczne obecnie stosowane w celu ostrzegania, informowania użytkowników dróg o możliwości wystąpienia sytuacji kolizyjnej pieszy-kierowca. Rozwiązania dostępne na rynku nie przewidują rozwiązań przekazywania informacji dwukierunkowej w relacji pieszy-kierowca dla systemów zabudowanych na pojazdach wielkogabarytowych. Przedstawiono możliwe do wykorzystania urządzenia detekcyjne wraz z ich oceną, dodatkowo przedstawiono proces badawczy potwierdzający zasadność przyjętego podejścia w stosunku do tworzonego systemu. Przedstawiono również prototyp systemu wspierającego bezpieczeństwo niechronionych uczestników ruchu znajdujących się w okolicy pojazdów wielkogabarytowych, spełniających założenia dotyczące informowania zarówno kierowców zbliżających się do pojazdów wielkogabarytowych znajdujących się w zatokach autobusowych, czyli miejscach newralgicznych, gdzie dochodzi do potrąceń pieszych i rowerzystów, jak również niechronionych uczestników ruchu drogowego, takich jak piesi. Prezentowany system odróżnia się na tle dostępnych systemów zwiększających bezpieczeństwo pieszych i rowerzystów. Największa innowacja systemu to wprowadzenie możliwości komunikacji pomiędzy użytkownikami znajdującymisięwokółpojazdówwielkogabarytowych,możliwość przekazania informacji na zewnątrz zarówno do kierowców jak i pieszych bez konieczności angażowania uwagi kierowcy pojazdu, na którym system jest zabudowany. Może to znacząco zwiększyć szanse, że w momencie wystąpienia potencjalnej sytuacji niebezpiecznej, któraś ze stron zareaguje w sposób prawidłowy i tym samym nie dojdzie do wypadku. Artykuł opisuje rozwiązania ogólnodostępne jak również innowacyjny system bezpieczeństwa dla pieszych i rowerzystów w otoczeniu pojazdów wielkogabarytowych.
Rocznik
Strony
45--59
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
  • Silesian University of Technology, Doctoral School, Akademicka 2a, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Doctoral School, Akademicka 2a, 44-100 Gliwice, Poland,
  • Silesian University of Technology, Doctoral School, Akademicka 2a, 44-100 Gliwice, Poland
  • DR-TECH Ltd., Drzymały 20H, 41-407 Imielin, Poland
Bibliografia
  • [1] Żurek, M. (2019). Multimedia Techniques Project, Warsaw.
  • [2] Symon E. Rzepka P. Owsiewski P. (2022). Komenda Główna Policji: Road accidents in Poland in 2022, Road Traffic Bureau, Warsaw.
  • [3] Adamczyk A. (2023). Road traffic safety and activities implemented in this area in 2022. Warsaw.
  • [4] Wicher J. (2020). Car and road traffic safety, Warsaw.
  • [5] https://www.copley.oh.us/382/Ohio-School-Bus-Traffic-Laws, (access date: 04.10.2023).
  • [6] Yoffie D. (2015). Mobileeye: The Future of Driverless Cars, Harvard Business School.
  • [7] https://www.komputerswiat.pl/aktualnosci/wydarzenia/wi-fi-zapobiegnie-wypadkom-drogowym/p8wddnb, (access date: 04.10.2023).
  • [8] Zhong Z., Liu S., Mathew M., Dubey A. (2018). Camera Radar Fusion for Increased Reliability In ADAS Applications. Proc. IS&T Int’l. Symp. On Electronic Imaging: Autonomous Vehicles and Machines, 258-1 - 258-4. https://doi.org/10.2352/ISSN.2470-1173.2018.17.AVM-258.
  • [9] Feliksik B. (2019). Closed-circuit television DR-TECH system for category B railroad and road crossings. Imielin.
  • [10] Li B., Zhang T., Xia T. (2016). Vehicle Detection from 3D Lidar Using Fully Convutional Network. Conference Paper, Robotics: Science and Systems. https://doi.org/10.48550/arXiv.1608.07916.
  • [11] Nazimek M. (2014). Comparison of the effectiveness of traffic detection algorithms for traffic Visio systems in vehicle detection. Department of Electronics and Information Technology Institute of Computer Science.
  • [12] Klein L.A., Mills M.K., Gibson D.R.P. (2006). Traffic Detector Handbook, 3rd ed., vol. I. FHWA-HRT- 06-108.
  • [13] Texas Transportation Institute, Cambridge Systematics, Inc., 2003.
  • [14] Tim K. (2014). The Lab Book Pages. An online collection of electronics information.
  • [15] Horn B.K. Schunck B.G. (1981). Determining Optical Flow, Techniques and Applications of Image Understanding, 0281, 319–331.
  • [16] Barański R., Kłaczyński M. (2020). Theoretical cooperation of equipment assemblies of the target planned configuration with power devices on vehicles. Kraków.
  • 17] Barański R., Kłaczyński M. (2020). Integration of core components with real-world supporting components. Simulation under operational conditions. Kraków.
  • [18] Wisznicki P., Apko (2016). Microwave detektor MFDR - 4Technical and operating documentation. Software version V3.0. Smolec.
  • [19] Wisznicki P., Apko (2016). Microwave motion detector MFDR - 5 ver. 2 Operation and exposure instructions version 2.2. Smolec.
  • [20] Wisznicki P., Apko (2016). Microwave detektor MFDR - 8 Detection range to 350m. Smolec.
  • [21] https://www.setra-bus.com/pl_PL/models/cc-hd-models/safety.html, (access date: 12.11.2023).
  • [22] https://karson.pl/oferta/system-antykolizyjny-mobileye/mobileye-shield/#, (access date: 12.11.2023).
  • [23] https://www.zf.com/products/pl/cv/products_69632.html, (access date: 12.11.2023).
  • [24] Kulchandani J.S., Dangarwala K.J. (2015). Moving object detection: Review of recent research trends. 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 1-5. https://doi.org/10.1109/PERVASIVE.2015.7087138.
  • [25] Shanliang Yao, et al. (2023). Radar - camera fusion for object detection and semantic segmentation in autonomous driving: a comprehensive review. IEEE Transactions on Intelligent Vehicles, 9(1). http://dx.doi.org/10.1109/TIV.2023.3307157.
  • [26] Wei Z., et al. (2022). MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors, 22(7):2542. https://doi.org/10.3390/s22072542.
  • [27] Cho M. (2019). A Study on the Obstacle Recognition for Autonomous Driving RC Car Using LiDAR and Thermal Infrared Camera. Proceedings of the Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia. https://doi.org/10.1109/ICUFN.2019.8806152.
  • [28] Ji Z.P.; Prokhorov D. (2008). Radar-vision fusion for object classification. Proceedings of the IEEE 11th International Conference on Information Fusion, Cologne, Germany. 1–7.
  • [29] Chen Y. et al. (2021). Investigating the Effect of School Bus Stopping Process on Driver Behavior of Surrounding Vehicles Based on a Driving Simulator Experiment. International Journal of Environmental Research and Public Health. 18(23):12538.
  • [30] Wu Y., Wang Y., Zhang S., Ogai H. (2021). Deep 3D Object Detection Networks Using LiDAR Data: A Review. IEEE Sensors Journal, 21(2), 1152-1171.
  • [31] Mukhtar A., Xia L., Tang T.B. (2015). Vehicle Detection Techniques for Collision Avoidance Systems: A Review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2318-2338. https://doi.org/10.1109/TITS.2015.2409109.
  • [32] Wang Z. et al. (2023). Review of Vehicle Detection Techniques for Intelligent Vehicles. IEEE Transactions on Neural Networks and Learning Systems, 34(8), 3811-3831. https://doi.org/10.1109/TNNLS.2021.3128968.
  • [33] Bu F., Chan C. (2005). Pedestrian detection In transit bus application: sensing technologies and safety solutions. IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 100-105. https://doi.org/10.1109/IVS.2005.1505085.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9165650c-e3b8-4066-86c2-281364dbcb02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.