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NORMAL POSITIVE LINEAR SYSTEMS AND ELECTRICAL
CIRCUITS

Summary. The notion of normal positive electrical circuits is introduced and some
their specific properties are investigated. New state matrices of positive linear systems
and electrical circuits are proposed and their properties are analyzed. It is shown that
positive electrical circuits with diagonal state matrices are normal for all values
of resistances, inductances and capacitances.
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NORMALNE DODATNIE UKLADY LINIOWE I OBWODY

Streszczenie. W artykule zaproponowano pojgcie dodatniego obwodu elektrycznego
oraz przeanalizowano specjalne wlasnosci dodatnich uktadow i obwodow elektrycznych.
Wykazano, ze dodatnie obwody elektryczne z diagonalnymi macierzami stanu sg zawsze
normalne dla wszystkich warto$ci rezystancji, indukcyjnosci i pojemnosci.

Stowa kluczowe: uktad normalny, dodatni, liniowy, obwod elektryczny

1. INTRODUCTION

A dynamical system is called positive if its trajectory starting from any nonnegative
initial state remains forever in the positive orthant for all nonnegative inputs. An overview of
state of the art in positive systems theory is given in the monographs [2, 12]. Variety of
models having positive behavior can be found in engineering, economics, social sciences,
biology and medicine, etc.

The notions of controllability and observability have been introduced by Kalman in [25,
26] and they are the basic concepts of the modern control theory [1, 4, 5, 8, 9, 17, 24, 28]. The
controllability, reachability and observability of linear systems and electrical circuits have
been investigated in [6, 7, 13, 15, 16, 27]. The asymptotic stability of positive standard and

fractional linear systems has been addressed in [3, 12, 23].
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The specific duality and stability of positive electrical circuits have been analyzed in [18]
and positive systems and electrical circuits with inverse state matrices in [14]. The stability of
continuous-time and discrete-time linear systems with inverse state matrices has been
investigated in [22]. The reduction of linear electrical circuits with complex eigenvalues to
linear electrical circuits with real eigenvalues has been considered in [21].

Standard and positive electrical circuits with zero transfer matrices have been
investigated in [19] and the normal positive electrical circuits have been introduced in [10].

In this paper the normal positive linear systems and electrical circuits are investigated.

The paper is organized as follows. In section 2 some preliminaries concerning positive
linear continuous-time systems are recalled. Some properties of the transfer matrices of
positive linear systems are presented in section 3. Normal positive linear systems are analyzed
in section 4. Normal positive linear electrical circuits are introduced and investigated in
section 5. Concluding remarks are given in section 6.

The following notation will be used: R - the set of real numbers, R™" - the set of nxm
real matrices, R”" - the set of nxm real matrices with nonnegative entries and R” =R"",

M, - the set of nxn Metzler matrices (real matrices with nonnegative off-diagonal entries),

I, - the nxn identity matrix.

2. PRELIMINARIES

Consider the continuous-time linear system
X =Ax+ Bu, (2.1a)
y==Cx, (2.1b)
where x=x(t)eR", u=u(t) e R", y=y(t)e R’ are the state, input and output vectors and
AeR™, BeR"™, CeRM™.
Definition 2.1. [12] The linear system (2.1) is called (internally) positive if x(¢#) e R" and
y(t)eR?, t>0 for any initial conditions x, € R} and all inputs u(¢z) e RY, 1>0.
Theorem 2.1. [12] The linear system (2.1) is positive if and only if
AeM, , BeR"™, CeR"™. (2.2)
Definition 2.2. [12] The positive linear system (2.1) for u(¢)=0 is called asymptotically
stable if
lim x(¢) =0 for all x, € R’ . (2.3)

t—0

Theorem 2.2. [12] The positive linear system (2.1) for u(¢) =0 is asymptotically stable (the

matrix 4 is Hurwitz) if and only if all coefficients of the characteristic polynomial
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p,(s)=det[[ s—A]=s"+a, s"" +..+as+a, (2.4)
are positive, 1.e. a, >0 for k=0,,....n —1.

We shall consider the positive system (2.1) with the matrix 4 of the form

-5, a 0 - 0 0 -5, 0 o - 0
0O -s a - 0 0 a -s, 0 - 0
4= : : Do : : |or 4,=| 0 a.2 —.s3 .0 0 | 2.5)
S, a, : : : : :
| o - 0 =y, | 0 0 o - a., -s,|
a, >0, k=1,..,n-1.
Theorem 2.3. [12] The positive system with (2.5) is asymptotically stable if and only if
Res, <0 for k=1,...,n. (2.6)

Definition 2.3. [12] The positive system (2.1) is called reachable in time [0,7,] if for any
given final state x, e R} there exists an input u(¢) e R} for £€[0,7,] that steers the state
x(¢) from zero initial state x(0) =0 to the final state x,, i.e. x(¢,)=x,.

Definition 2.4. [12] A real matrix 4eR7" is called monomial if each its row (column)

contains only one positive entry and the remaining entries are zero.

Theorem 2.4. [12] The positive system (2.1) is reachable if the matrix
‘
R, = fe“BBTe“fdr L1, >0 (2.7)
0
1s monomial.
The input
u@t)=B"e" R 'x, eR™, 1e[0,1,] (2.8)
steers the state x(¢) of the system from x(0)=0 to x(¢,)=x,.
The positive system (2.1) is reachable in time [0,7,] if and only if A€ M, is diagonal and

B eR"™ has m linearly independent monomial columns.

Definition 2.5. [12] The positive system (2.1) is called observable in time [0,7,] if knowing

the output y(¢) € R? and the input u(¢) e R? it is possible to find the unique initial condition
x(0) e R
Theorem 2.5. [12] The positive system (2.1) is observable in time [0,7,] if the matrix

Iy
0, = j e’ "C"Ce™dr, t, >0 (2.9)
0

1S monomial.
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3. TRANSFER MATRICES OF POSITIVE LINEAR SYSTEMS

The transfer matrix of the positive linear system (2.1) is given by
T(s)=C[I,s—A]'BeR""(s), (3.1)

pxm

where R”*"(s) is the set of p xm rational matrices in s.

Theorem 3.1. If the matrix 4e M, given by (2.5) is asymptotically stable (Hurwitz) and
BeR"™, CeR” then all coefficients of the transfer matrices

T(s)=Clls—A]'B, T,(s)=C[I,s— 4,]"'B (3.2)
are nonnegative.

Proof. If 4, 1s Hurwitz and a, >0, k =1,...,n—1 then the entries of the inverse matrix

r -1
s+s,  —aq 0o - 0

0 s+s5, —a,

[Ls—AT" = s
0 S+S,, a,
| 0 0 s+s, |

11 a]Z a]3 a],n—] a],n

! 0 0‘:22 Uy a2,:n—] a?,n
(s+s)(s+5,)...(s+s,) 0 0 0 - o o ’

n—1,n—1 n—l,n
o0 0 - 0 a,, |

o, =(s+58,)..(s+s,), a, =a,(s+s8;)...(s+5,), o;=aa,(s+s,)..(s+5,),

o

n—1°

ol = @ea, (s +s,), @, =aa,..a
Oy =(S+85)(S+8;)...(s+5,), Ap; =a,(s+5)(5+5,)..(s+5,),
Ay, =0y, (S+5)(s+5,), @y, =ay..a, (s+5)(s+s,),
Qyin1 = (s+5)(s+s,,)(s+5,), Ayin =04, (s+5)...(s+5,,), (3.3)
a,,=+s)(s+s,)..(s+s,)

are rational functions with nonnegative coefficients.

Therefore, if BeR7™ and CeRY™ then all coefficients of the transfer matrix 7)(s) are
nonnegative.

The proof for 7,(s) is similar (dual). o

Example 3.1. Consider the transfer function of the positive system (3.1) with

1 2 0 0
A=4=l0 -2 11, B=|0|,Cc=01 3 2. (3.4)
0 0 -3 1

In this case using (3.1) and (3.4) we obtain
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-1

s+1 =2 0 0
T](s):C[I3s—A]]“B:[1 3 2] 0 s+2 -1 0
0 0 s+3 1

! (s+2)(s+3) 2(s+3) 2 0
T (s+1)(s+2)(s+3) 32 0 (s+1)(s+3) s+l 01 (3.5
0 0 (s+D(s+2)| 1
25> +95+9

TS 4652 +11s+6
The transfer function is minimal-phase since its zeros z, =—1.5, z, =—3 are negative. After

cancellation of the zero z, =3 with the pole s, = -3 we obtain

25 +3
Tl(S)Zm- (3.6)
It 1s easy to check that if
-1 2 0 0
4=0 -2 1/|,B=0,C=[1 2 1] (3.7)
0 0 -3 1
then
s+1 -2 0 770
T(s)=C/[I,s—A1"'B,=[1 2 1] 0 s+2 =-1|10 =L. (3.8)
o o s+3] 1] T
In this case we have
0O 0 2
rank[B, AB, A'B]=rank|0 1 -5|=3=n (3.9)
1 -3 9
and
C, 1 2 1
rank| C, 4, |=rank| -1 -2 -1|=1<n=3. (3.10)
C A 1 2 1

Therefore, the standard pair (4,,B,) is controllable, but the pair (4,,C),) is unobservable.
Consider the SISO (single-input (m =1) single-output ( p =1)) positive linear system with 4,
given by (2.5) and

B =| |ew", C en™. (3.11)
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It 1s easy to check that

rank[B, 4B, -+ A"'Bl=nifa, >0, k=1..,n-1. (3.12)
Let z, z,, ..., z,_, be the zeros (the roots of n(s)=0) and p,, p,, ..., p, the poles (the
roots of d(s)=0) of the transfer function

T(s)= ClL,s - 41" B =2 (3.13)
d(s)
Theorem 3.2. If
G
C]A]
rank| . <n (3.14)
C A

then at least one zero of (3.13) is equal to its poles.

Proof. It is well-known that if (3.14) holds then the zeros and poles cancellation occurs in
(3.13). It happens only if at least one zero of (3.13) is equal to its poles. O

Now let us consider the SISO positive system with 4, given by (2.5) and

B,eR",C,=[0 -+ 0 1]eR". (3.15)
It 1s easy to check that
G
rank CiAz =nifa >0, k=1..n-1. (3.16)
C, A
Theorem 3.3. Let p,, p,, ..., p, be the poles and z,, z,, ..., z, | the zeros of the transfer
function
T,(s)=C,[Is—4,]'B,. (3.17)
If
rank[B, A,B, - A'B)]<n (3.18)

then at least one zero of (3.17) is equal to its poles.

Proof. The proof is dual to the proof of Theorem 3.2.

4. NORMAL POSITIVE LINEAR SYSTEMS

Consider the transfer matrix of the form

T(s)= &;)) e R (s), (4.1a)
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where N(s) e R”"[s] is the polynomial matrix and d(s) is the least common denominator of
the form

d(s)=s"+a, s""'+.+as+a,. (4.1b)
Definition 4.1. The positive linear system with (4.1) is called normal if every nonzero second
order minor of N(s) is divisible (with zero remainder) by the polynomial d(s).

The normal systems are insensitive to the change of their parameters [11].
Definition 4.2. The state matrix 4 of the linear system (2.1) is called cyclic if its minimal

polynomial W(s) is equal to its characteristic polynomial

o(s)=det[/ s— A]. (4.2)
The minimal polynomial y(s) is related to its characteristic polynomial ¢(s) by [11]
o(s)
w(s)= ; (4.3)
Dn—l (S)

where D, (s) is the greatest common divisor of all n—1 order minors of the matrix
[£,s—A].

Therefore, y(s) =¢(s) if and only if D, ,(s)=1.

Theorem 4.1. The matrices 4, and A4, defined by (2.5) are cyclic.

Proof. By Definition 4.2 and (4.3) the matrices 4, and 4, are cyclic if and only if the

greatest common divisor of all n» —1 order minors of the matrices

[s+s, —aq 0o - 0 0
0 s+s, —a, - 0 0
[Is—A4]1=| : : D : Co
0 0 0 s+s,., —a,,
0 0 0 - 0 S+s,
. - (4.4)
S+, o o0 - 0 0
-a, s+s, 0 0 0
[1,s = 4,]= ;

0 0 0 - s+s,, 0
0 0O 0 - =-a,. s+s,]

are D _,(s)=1.1Itis easy to see that the minors corresponding to the first column and the n-th
row of the matrix [/ s — 4] and to the first row and the n-th column of the matrix [/ s—4,]
are equal to aa,...a, ,. Therefore, D, |(s)=1 and the matrices 4, and 4, are cyclic. O

Theorem 4.2. The positive linear system with the matrices 4, and 4, defined by (2.5) 1s

normal for any B e R and C e R7".
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Proof. By Definition 4.1 the positive linear system with 4, (4,) defined by (2.5) and any
BeRT", CeRP” is normal if every nonzero second order minor of the matrix
N(s)=C[Il,s—A4],B is divisible by the polynomial det[/ s—4,].

Let Z;7™  be the minor of the matrix Z with its i, i, ..., i, rows and j,, j,, ..., j, its

columns. Then it is well-known [20] that the g-minor of the matrix Z = PQ is given by

By, iy iy kiky .k,
ZjljZ"'jq PkaZ"'kq Jj2-dg " (45)
<k <..<k,

Note that the minors of the matrices B and C are independent of s. Using (4.5) for the matrix

Cll,s—A4],B it is easy to see that its every nonzero second order minor is divisible by
det[/ s — A4 ] since by Theorem 4.1 the matrix 4, ( 4,) is cyclic. Therefore, the positive linear

system with 4, (4,) and any B e R, C e R”™ is normal. O

Example 4.1. Consider the positive linear system with the matrices

-1 a 0 b, b,
A4=|0 -2 a, |, a >0 for k=12, B=|b, b, |eR,
0 0 -3 b, b, (4.6)

Ch G G 2
C:{ e R,

Gy Cyp Cpn

Taking into account that

s+1 —aq 0
d(s)=det[lis—A]=| 0 s+2 —a,|=(s+D)(s+2)(s+3)=5"+65"+11s+6 (4.7)
0 0 s+3
and
(s+2)(s+3) a(s+3) a,a,
[Lys—A4],, = 0 (s+D)(s+3) a,(s+1) (4.8)
0 0 (s+D(s+2)
we obtain

N(s)=Clls— 41,58

S (s+2)(s+3)  a/(s+3) a,a, b, b,
_| ‘u 12 13:| 0 (S+1)(S+3) az(S+1) b2] bzz (493)
¢, ¢ c
21 Cn Cn 0 0 (s+D(s+2) | by, by,

_ —nn(s) an(S):|

| 75,(5) 1y (s)
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where
n,(s) = by b, a,c, (s +1) + by a,c, (s +3) + b, by ;5 (s +1)(s +2) + by, by ¢, (5 + 2)(s +3)
+b,c, (s +1)(s+3)+b,,b;,a,a,¢,,,
1, (8) =by,by,a,¢, (s +1) + byaic) (s +3) + byby,c5 (s +1)(s +2) + byby,c (s + 2)(s + 3)
+by,c, (s +1)(s+3)+byby,a,a.c,
1y, (8) = by by,0,C5, (s + 1) + byya,0,, (S +3) + by by 005 (s + D) (s + 2) + by by 5, (5 +2) (s + 3)
+b,,c (s +1)(s +3) + by by, a1a,05,,

(4.9b)

1y, (8) = by,by,a,c,, (s +1) +bya,c, (s +3) +b,,bs, 005 (s +1) (s +2) + by, b0, (s + 2)(s + 3)
+bycp,(s+1D)(s +3)+b,,b5,a,a,c,,.
Therefore, the positive linear system with (4.6) is normal.
Note that the matrices (2.5) for a, =0, k=1,...,n—1 are equal and have the diagonal form
A, =diag[-s, -5, -+ —s,]. (4.10)
In this particular case Theorem 4.2 has the following form.

Theorem 4.3. The positive linear system with (4.10) and any B € R, C e R”™ is normal.

5. NORMAL POSITIVE LINEAR ELECTRICAL CIRCUITS

Consider linear electrical circuits composed of resistors, capacitors, coils and voltage

(current) sources. As the state variables (the components of the state vector x(¢)) we choose
the voltages on the capacitors and the currents in the coils. Using Kirchhoff’s laws we may
describe the linear circuits in transient states by the state equations
X =Ax+ Bu, (5.1a)
y==Cx, (5.1b)
where x=x(¢t)eR", u=u(t)eR", y=y(t) e R’ are the state, input and output vectors and
AeR™, BeR"™, CeRM™.
Definition 5.1. [23] The linear electrical circuit (5.1) is called (internally) positive if the state
vector x(¢) € R’ and output vector y(¢#) e R”, t >0 for any initial conditions x, € R’ and all
inputs u(t) e R?, t>0.
Theorem 5.1. [23] The linear electrical circuit (5.1) is positive if and only if
AeM, , BeR"™, CeR"™. (5.2)
The transfer matrix of the linear electrical circuit described by (5.1) can be always written in
the form (4.1a).

Definition 5.2. The positive linear electrical circuit is called normal if every nonzero second
order minor of N(s) is divisible by d(s).
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Example 5.1. Consider the linear electrical circuit shown on Fig. 1 with given resistances R, ,

inductances L, , kK =1,2,3 and source voltages ¢, e, .

Fig. 1. Electrical circuit of Example 5.1
Rys. 1. Obwdd elektryczny dla przyktadu 5.1

Using the mesh method for the electrical circuit we obtain
{ Ln _le}i{l}}:{_&] R]2 j|{l:1j|+{elj|’ (5.3a)
- L2] L22 dt b R21 - R22 L )

where i, =i (¢), i, =i,(t) are the mesh currents and
Ry=R +Ry, Ry =R, =Ry, Rjy =R, + Ry, L, =L, +L,,

(5.3b)
L12 :LZI :Lsa L22 :Lz +L3-

The inverse matrix

-1
L—] :{ Ln _le} _ 1 {Lzz le} (5 4)
_L2] L22 L] (Lz + Ls) + L2L3 L2] Ln

has all positive entries.
afil 4ol ], s
dt|i, i e,

From (5.3a) we obtain

where
A= L—]{_Rn R]2 }
R21 - R22
— 1 {_ L, (R, +R3) - LR, LR, — LR, } (5.5b)
L] (Lz +L3)+L2L3 L1R3 _L3R1 _L] (Rz +R3)_L3R2 ’
B=L"eR™,
Note that if

LR, = LR, and L,R, —L,R, >0 (5.6a)
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then the matrix 4 has the form of the matrix 4, defined by (2.5) and for
LR, = LR, (5.6b)
the form of the matrix A, . In both cases the electrical circuit is positive.

These considerations can be easily extended to n-mesh linear electrical circuits.
Following [23] let us consider the linear electrical circuit shown in Fig. 2 with given

resistances R,, k=1,...,8, inductances L,, L,, L,, L, capacitances C,, C;, C;, C, and

source voltages ¢, e,, ¢e,, ¢, €.

?é
ry
é-hw
A
,<
%?v
v

(Sh e /\ €, €g
& e

Fig. 2. Positive electrical circuit
Rys. 2. Dodatni obwdd elektryczny

Using Kirchhoff’s laws we may write the equations

e,=u, +R.C, ditk, k=135, (5.7a)
di
e te; =Rji +L, 7‘;, j=2,4,68. (5.7b)
The equations can be written in the form
u u
iHAHB (5.80)
dt| i i
where
o]
I/l] 12 e
. 2
u i
u=| "1,i= _4,e: e, (5.8b)
Us lg ¢
u, fg e(’
L%

and
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. 1 1 R R R R
A:dlag{— L - --z £ 5 _3)
1 C] R3 C3 RS CS R7 C7 L2 L4 L() L8
L 9000 1 n 0 o
R.C, L, L,
1 1 1 5.8
2 e 00 0 0 — 0 — 0 0 (5.8c)
B{BJ’B“ 1 B Y
2 0000 — 0 0 — 0
RSCS L() LG
1 1
L 9000 — 0 0 0 —
_R7C7 i | L L |

The matrix Ae M, is diagonal and asymptotically stable and B e R*®. Therefore, the
electrical circuit is positive for any values of the resistances, inductances and capacitances and
from Theorem 4.3 we have the following important theorem.

Theorem 5.2. Positive linear electrical circuit with diagonal matrix 4€ M, and BeR™,

C e R is normal for any values of the resistances, inductances and capacitances.

6. CONCLUDING REMARKS

The notion of normal positive electrical circuit has been introduced and some specific
properties of this class have been investigated. New state matrices of the positive linear
systems and electrical circuits have been introduced and their properties have been analyzed
(Theorems 3.2, 3.3, 4.1, 4.2 and 4.3). It has been shown that the positive electrical circuits
with diagonal state matrices are normal for all values of their resistances, inductances and
capacitances (Theorem 5.2). The considerations have been illustrated by numerical examples.

The considerations can be extended to fractional linear systems and electrical circuits.
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