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NORMAL POSITIVE LINEAR SYSTEMS AND ELECTRICAL 
CIRCUITS 

Summary. The notion of normal positive electrical circuits is introduced and some 
their specific properties are investigated. New state matrices of positive linear systems 
and electrical circuits are proposed and their properties are analyzed. It is shown that 
positive electrical circuits with diagonal state matrices are normal for all values  
of resistances, inductances and capacitances. 
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NORMALNE DODATNIE UKŁADY LINIOWE I OBWODY 

Streszczenie. W artykule zaproponowano pojęcie dodatniego obwodu elektrycznego 
oraz przeanalizowano specjalne własności dodatnich układów i obwodów elektrycznych. 
Wykazano, że dodatnie obwody elektryczne z diagonalnymi macierzami stanu są zawsze 
normalne dla wszystkich wartości rezystancji, indukcyjności i pojemności.  

Słowa kluczowe: układ normalny, dodatni, liniowy, obwód elektryczny 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory starting from any nonnegative 
initial state remains forever in the positive orthant for all nonnegative inputs. An overview of 
state of the art in positive systems theory is given in the monographs [2, 12]. Variety of 
models having positive behavior can be found in engineering, economics, social sciences, 
biology and medicine, etc. 

The notions of controllability and observability have been introduced by Kalman in [25, 
26] and they are the basic concepts of the modern control theory [1, 4, 5, 8, 9, 17, 24, 28]. The 
controllability, reachability and observability of linear systems and electrical circuits have 
been investigated in [6, 7, 13, 15, 16, 27]. The asymptotic stability of positive standard and 
fractional linear systems has been addressed in [3, 12, 23]. 
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The specific duality and stability of positive electrical circuits have been analyzed in [18] 
and positive systems and electrical circuits with inverse state matrices in [14]. The stability of 
continuous-time and discrete-time linear systems with inverse state matrices has been 
investigated in [22]. The reduction of linear electrical circuits with complex eigenvalues to 
linear electrical circuits with real eigenvalues has been considered in [21]. 

Standard and positive electrical circuits with zero transfer matrices have been 
investigated in [19] and the normal positive electrical circuits have been introduced  in [10]. 

In this paper the normal positive linear systems and electrical circuits are investigated. 
The paper is organized as follows. In section 2 some preliminaries concerning positive 

linear continuous-time systems are recalled. Some properties of the transfer matrices of 
positive linear systems are presented in section 3. Normal positive linear systems are analyzed 
in section 4. Normal positive linear electrical circuits are introduced and investigated in 
section 5. Concluding remarks are given in section 6. 

The following notation will be used:   - the set of real numbers, mn  - the set of mn  

real matrices, mn
  - the set of mn  real matrices with nonnegative entries and 1

  nn , 

nM  - the set of nn  Metzler matrices (real matrices with nonnegative off-diagonal entries), 

nI - the nn  identity matrix. 

2. PRELIMINARIES 

Consider the continuous-time linear system 
BuAxx  ,                                                       (2.1a) 

Cxy  ,                                                                (2.1b) 

where ntxx  )( , mtuu  )( , ptyy  )(  are the state, input and output vectors and 
nnA  , mnB  , npC  . 

Definition 2.1. [12] The linear system (2.1) is called (internally) positive if ntx )(  and 
pty )( , 0t  for any initial conditions nx 0  and all inputs  mtu )( , 0t . 

Theorem 2.1. [12] The linear system (2.1) is positive if and only if 

nMA , mnB 
 , npC 

 .                                            (2.2) 

Definition 2.2. [12] The positive linear system (2.1) for 0)( tu  is called asymptotically 

stable if 

0)(lim 


tx
t

 for all nx 0 .                                             (2.3) 

Theorem 2.2. [12] The positive linear system (2.1) for 0)( tu  is asymptotically stable (the 

matrix A is Hurwitz) if and only if all coefficients of the characteristic polynomial 
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are positive, i.e. 0ka  for 1,...,1,0  nk . 

We shall consider the positive system (2.1) with the matrix A of the form 
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Theorem 2.3. [12] The positive system with (2.5) is asymptotically stable if and only if 
0Re ks  for nk ,...,1 .                                                    (2.6) 

Definition 2.3. [12] The positive system (2.1) is called reachable in time ],0[ ft  if for any 

given final state n
fx   there exists an input mtu )(  for ],0[ ftt  that steers the state 

)(tx  from zero initial state 0)0( x  to the final state fx , i.e. ff xtx )( . 

Definition 2.4. [12] A real matrix nnA 
  is called monomial if each its row (column) 

contains only one positive entry and the remaining entries are zero. 
Theorem 2.4. [12] The positive system (2.1) is reachable if the matrix 


f

T
t

ATA
f deBBeR

0

 , 0ft                                              (2.7) 

is monomial. 
The input 

11)()( mx
ff

ttAT xReBtu f
T


  , ],0[ ftt                                     (2.8) 

steers the state )(tx  of the system from 0)0( x  to ff xtx )( . 

The positive system (2.1) is reachable in time ],0[ ft  if and only if nMA  is diagonal and 
mnB 

  has m linearly independent monomial columns. 

Definition 2.5. [12] The positive system (2.1) is called observable in time ],0[ ft  if knowing 

the output pty )(  and the input mtu )(  it is possible to find the unique initial condition 
nx )0( . 

Theorem 2.5. [12] The positive system (2.1) is observable in time ],0[ ft  if the matrix 


f

T
t

ATA
f dCeCeO

0

 , 0ft                                               (2.9) 

is monomial. 
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3. TRANSFER MATRICES OF POSITIVE LINEAR SYSTEMS 

The transfer matrix of the positive linear system (2.1) is given by 

)(][)( 1 sBAsICsT mp
n

  ,                                           (3.1) 

where )(smp  is the set of mp  rational matrices in s. 

Theorem 3.1. If the matrix nMA  given by (2.5) is asymptotically stable (Hurwitz) and 
mnB 

 , npC 
  then all coefficients of the transfer matrices 

BAsICsT n
1

11 ][)(  , BAsICsT n
1

22 ][)(                                  (3.2) 

are nonnegative. 
Proof. If 1A  is Hurwitz and 0ka , 1,...,1  nk  then the entries of the inverse matrix 
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       (3.3) 

are rational functions with nonnegative coefficients. 

Therefore, if mnB 
  and npC 

  then all coefficients of the transfer matrix )(1 sT  are 

nonnegative. 
The proof for )(2 sT  is similar (dual). □ 

Example 3.1. Consider the transfer function of the positive system (3.1) with 
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B , ]231[C .                            (3.4) 

In this case using (3.1) and (3.4) we obtain 
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The transfer function is minimal-phase since its zeros 5.11 z , 32 z  are negative. After 

cancellation of the zero 32 z  with the pole 33 s  we obtain 

.
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It is easy to check that if 
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In this case we have 

nBABAB 
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Therefore, the standard pair ),( 11 BA  is controllable, but the pair ),( 11 CA  is unobservable. 

Consider the SISO (single-input ( 1m ) single-output ( 1p )) positive linear system with 1A  

given by (2.5) and 

nB 
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, nC 

 1
1 .                                             (3.11) 
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It is easy to check that 

nBABAB n  ]rank[ 1
1

1111   if 0ka , 1,...,1  nk .                      (3.12) 

Let 1z , 2z , …, 1nz  be the zeros (the roots of 0)( sn ) and 1p , 2p , …, np  the poles (the 

roots of 0)( sd ) of the transfer function 

)(
)(][)( 1

1
111 sd

snBAsICsT n   .                                          (3.13) 

Theorem 3.2. If 

n
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                                                      (3.14) 

then at least one zero of (3.13) is equal to its poles. 
Proof. It is well-known that if (3.14) holds then the zeros and poles cancellation occurs in 
(3.13). It happens only if at least one zero of (3.13) is equal to its poles. □ 
Now let us consider the SISO positive system with 2A  given by (2.5) and 

nB 2 , nC 
 1

2 ]100[  .                                      (3.15) 

It is easy to check that 

n

AC

AC
C

n
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rank


 if 0ka , 1,...,1  nk .                                 (3.16) 

Theorem 3.3. Let 1p , 2p , …, np  be the poles and 1z , 2z , …, 1nz  the zeros of the transfer 

function 

2
1

222 ][)( BAsICsT n
 .                                               (3.17) 

If 

nBABAB n  ]rank[ 2
1

2222                                          (3.18) 

then at least one zero of (3.17) is equal to its poles. 
Proof. The proof is dual to the proof of Theorem 3.2. 

4. NORMAL POSITIVE LINEAR SYSTEMS 

Consider the transfer matrix of the form 

)(
)(
)()( s

sd
sNsT mp ,                                               (4.1a) 
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where ][)( ssN mp  is the polynomial matrix and )(sd  is the least common denominator of 

the form 

01
1

1 ...)( asasassd n
n

n  
 .                                       (4.1b) 

Definition 4.1. The positive linear system with (4.1) is called normal if every nonzero second 
order minor of )(sN  is divisible (with zero remainder) by the polynomial )(sd . 

The normal systems are insensitive to the change of their parameters [11]. 
Definition 4.2. The state matrix A of the linear system (2.1) is called cyclic if its minimal 
polynomial )(s  is equal to its characteristic polynomial 

]det[)( AsIs n  .                                                   (4.2) 

The minimal polynomial )(s  is related to its characteristic polynomial )(s  by [11] 

)(
)()(

1 sD
ss

n


 ,                                                       (4.3) 

where )(1 sDn  is the greatest common divisor of all 1n  order minors of the matrix 

][ AsIn  . 

Therefore, )()( ss    if and only if 1)(1  sDn . 

Theorem 4.1. The matrices 1A  and 2A  defined by (2.5) are cyclic. 

Proof. By Definition 4.2 and (4.3) the matrices 1A  and 2A  are cyclic if and only if the 

greatest common divisor of all 1n  order minors of the matrices 
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are 1)(1  sDn . It is easy to see that the minors corresponding to the first column and the n-th 

row of the matrix ][ 1AsIn   and to the first row and the n-th column of the matrix ][ 2AsIn   

are equal to 121 ... naaa . Therefore, 1)(1  sDn  and the matrices 1A  and 2A  are cyclic. □ 

Theorem 4.2. The positive linear system with the matrices 1A  and 2A  defined by (2.5) is 

normal for any mnB 
  and npC 

 . 
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Proof. By Definition 4.1 the positive linear system with 1A  ( 2A ) defined by (2.5) and any 
mnB 

 , npC 
  is normal if every nonzero second order minor of the matrix 

BAsICsN adn ][)( 1  is divisible by the polynomial ]det[ 1AsIn  . 

Let q

q

iii
jjjZ ...

...
21

21
 be the minor of the matrix Z with its 1i , 2i , …, qi  rows and 1j , 2j , …, qj  its 

columns. Then it is well-known [20] that the q-minor of the matrix PQZ   is given by 
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Note that the minors of the matrices B and C are independent of s. Using (4.5) for the matrix 
BAsIC adn ][ 1  it is easy to see that its every nonzero second order minor is divisible by 

]det[ 1AsIn   since by Theorem 4.1 the matrix 1A  ( 2A ) is cyclic. Therefore, the positive linear 

system with 1A  ( 2A ) and any mnB 
 , npC 

  is normal. □ 

Example 4.1. Consider the positive linear system with the matrices 
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    (4.9b) 

Therefore, the positive linear system with (4.6) is normal. 
Note that the matrices (2.5) for 0ka , 1,...,1  nk  are equal and have the diagonal form 

]diag[ 21 nd sssA   .                                          (4.10) 

In this particular case Theorem 4.2 has the following form. 

Theorem 4.3. The positive linear system with (4.10) and any mnB 
 , npC 

  is normal. 

5. NORMAL POSITIVE LINEAR ELECTRICAL CIRCUITS 

Consider linear electrical circuits composed of resistors, capacitors, coils and voltage 
(current) sources. As the state variables (the components of the state vector )(tx ) we choose 

the voltages on the capacitors and the currents in the coils. Using Kirchhoff’s laws we may 
describe the linear circuits in transient states by the state equations 

BuAxx  ,                                                       (5.1a) 
Cxy  ,                                                                (5.1b) 

where ntxx  )( , mtuu  )( , ptyy  )(  are the state, input and output vectors and 
nnA  , mnB  , npC  . 

Definition 5.1. [23] The linear electrical circuit (5.1) is called (internally) positive if the state 

vector ntx )(  and output vector pty )( , 0t  for any initial conditions nx 0  and all 

inputs  mtu )( , 0t . 

Theorem 5.1. [23] The linear electrical circuit (5.1) is positive if and only if 

nMA , mnB 
 , npC 

 .                                            (5.2) 

The transfer matrix of the linear electrical circuit described by (5.1) can be always written in 
the form (4.1a). 
Definition 5.2. The positive linear electrical circuit is called normal if every nonzero second 
order minor of )(sN  is divisible by )(sd . 
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Example 5.1. Consider the linear electrical circuit shown on Fig. 1 with given resistances kR , 

inductances kL , 3,2,1k  and source voltages 1e , 2e . 

 

 
Fig. 1. Electrical circuit of Example 5.1 
Rys. 1. Obwód elektryczny dla przykładu 5.1  

Using the mesh method for the electrical circuit we obtain 
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where )(11 tii  , )(22 tii   are the mesh currents and 
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The inverse matrix 
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From (5.3a) we obtain 
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Note that if 

1331 RLRL   and 02332  RLRL                                         (5.6a) 
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then the matrix A has the form of the matrix 1A  defined by (2.5) and for 

2332 RLRL                                                          (5.6b) 

the form of the matrix 2A . In both cases the electrical circuit is positive. 

These considerations can be easily extended to n-mesh linear electrical circuits. 
Following [23] let us consider the linear electrical circuit shown in Fig. 2 with given 
resistances kR , 8,...,1k , inductances 2L , 4L , 6L , 8L , capacitances 1C , 3C , 5C , 7C  and 

source voltages 0e , 2e , 4e , 6e , 8e . 

 

 
Fig. 2. Positive electrical circuit 
Rys. 2. Dodatni obwód elektryczny 

Using Kirchhoff’s laws we may write the equations 

dt
duCRue k

kkk 0 , 7,5,3,1k ,                                        (5.7a) 
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The matrix 8MA  is diagonal and asymptotically stable and 58
B . Therefore, the 

electrical circuit is positive for any values of the resistances, inductances and capacitances and 
from Theorem 4.3 we have the following important theorem. 

Theorem 5.2. Positive linear electrical circuit with diagonal matrix nMA  and mnB 
 , 

npC 
  is normal for any values of the resistances, inductances and capacitances. 

6. CONCLUDING REMARKS 

The notion of normal positive electrical circuit has been introduced and some specific 
properties of this class have been investigated. New state matrices of the positive linear 
systems and electrical circuits have been introduced and their properties have been analyzed 
(Theorems 3.2, 3.3, 4.1, 4.2 and 4.3). It has been shown that the positive electrical circuits 
with diagonal state matrices are normal for all values of their resistances, inductances and 
capacitances (Theorem 5.2). The considerations have been illustrated by numerical examples. 

The considerations can be extended to fractional linear systems and electrical circuits. 
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