PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geotechnologies Applied to Anthropomorphic Structures: Use of GPR for Detection of Structural Problems, Causes and Effects - Case Study in Coimbra, Portugal

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Geotechnologie stosowane w konstrukcjach antropomorficznych: Wykorzystanie georadaru do wykrywania problemów strukturalnych, przyczyn i skutków - studium przypadku w Coimbrze w Portugalii
Języki publikacji
EN
Abstrakty
EN
One of the recurrent problems in civil construction concerns the wear and deterioration of structures due to their use over time. There should be a plan for monitoring the structures to assess and quantify anomalies, which will allow the minimization and rehabilitation measures to be carried out in advance. This study aimed to use geotechnologies, specifically the Ground Probing Radar (GPR), to identify and quantify the damage caused using a swimming pool inserted in a structure built on a residential property. The methodology comprised the use of georradar Sensors & Software PulseEKKO GPR for data acquisition. The data were processed in the software EKKO Project considering the following parameters: 1- Grain/Filter: Dewow + SEC2 Gain (Attenuation:10.00 Start Gain:4.00 Maximum Gain: 950). Seven acquisition profiles were performed: 3 on the East side, 2 on the South side, and 2 on the West side of the pool, with a spacing between 0.8 m. From the visualization of the processed radargrams, and the slices elaborated for each profile with a color palette corresponding to the obtained reflectance values, it was possible to identify the underlying structures of the pavement of the edge of the pool such as beams, beam frames, slope, interior space of the support structure and, most importantly, the degree of subsoil materials alteration, depth, and dispersion of water infiltrations. On the East side, the pool is inserted into the rock formation; it is possible to identify up to 1 m depth of the water infiltration and dispersion. To the West and South, the pool is supported by a built-up structure; underneath there is a hall and the engine room. In these places, the infiltration and dispersion of water were identified until approximately 0.7 m depth, as well as the existing structures and their condition. The 0.7 m corresponds to the thickness of the existing slab and beams. Based on these results, an intervention plan was prepared for the rehabilitation of the deterioration of the materials and the minimization of water percolation through the waterproofing of the pool's surrounding areas.
Rocznik
Strony
301--308
Opis fizyczny
Bibliogr. 11 poz., tab., wykr., zdj.
Twórcy
autor
  • IQGeo - Serviços, Lda e Geosciences Center of the University of Coimbra, Portugal
  • University of Coimbra, Geosciences Center of the University of Coimbra, Portugal
  • University of Coimbra, Geosciences Center of the University of Coimbra, Portugal
  • Instituto Dom Luiz, Portugal
Bibliografia
  • 1. Annan, A. P.; Cosway, S. W., ‘Ground penetrating radar survey design’, in 5th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEE’92, Oak Brook (1992) 329-352, https://doi.org/10.4133/1.2921946.36.
  • 2. Annan, A. P. (2003). Ground penetrating radar - Principles, procedures & applications. Sensors & Software Inc. Canada. 271 pp.
  • 3. Azerêdo, A. C. (2007). Formalização da litoestratigrafia do Jurássico Inferior e Médio do Maciço Calcário Estremenho (Bacia Lusitânica). Comunicações Geológicas, 94, 29-51.
  • 4. Barraca, N., Matias, M., & Almeida, F. (2019). O método de radar de penetração no solo (GPR) na caracterização do Mosteiro da Batalha. Conservar Património, 32.
  • 5. Barraca, N.; Almeida, M.; Varum, H.; Matias, M. S. (2014). ‘The use of GPR in the rehabilitation of built heritage’, in Near Surface Geoscience 2014 - 20th European Meeting of Environmental and Engineering Geophysics, Athens. https://doi. org/10.3997/2214-4609.20141998.
  • 6. Carvalho, J. L. L. (2018). Casos de estudo com utilização de GPR-Reconhecimento e caracterização de estruturas geológicas, arqueológicas e estruturas subterrâneas (Master dissertation, Universidade de Coimbra).
  • 7. Duarte, J., Pedrosa, D., Carvalho, J., Figueiredo, F., & Catarino, L. (2019). Use of Non-Destructive Methods in Structural Analysis of Petrous Materials-Ultrasonic Testing and Ground Penetrating Radar (GPR). In IOP Conference Series: Earth and Environmental Science (Vol. 221, No. 1, p. 012061). IOP Publishing.
  • 8. Duarte, J., Carvalho, J., & Figueiredo, F. (2019). Use of Ground Penetration Radar (GPR) in the Evaluation of Geological-Structural Elements of Ornamental Carbonated Rocks-Case Study in Valinho De Fatima, Portugal. In IOP Conference Series: Earth and Environmental Science (Vol. 362, No. 1, p. 012101). IOP Publishing.
  • 9. H. M. Jol (2009). Ground penetrating radar: Theory and applications. 1st edition. Elsevier Science.
  • 10. Lai, W. W. L.; Dérobert, X.; Annan, P. (2017). ‘A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis’, NDT & E International 96. 58-78, https://doi.org/10.1016/j.ndteint.2017.04.002
  • 11. Tareco, H.; Grangeia, C.; Varum, H.; Matias, M. S. (2009). ‘A high resolution GPR experiment to characterize the internal structure of a damaged adobe wall’, First Break, 27(8), 79-84. M. P. Brown and K. Austin, The New Physique (Publisher Name, Publisher City, 2005), pp. 25–30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-915d3d37-4673-4c01-bb5e-a7e83cc4b47b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.