Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electrocatalytic reduction of carbon dioxide into valued chemicals such as formic acid has the most promising potential in applying renewable energy for useful materials and mitigating the greenhouse effect. However, the studies still focus on developing catalysts with low price and high catalytic properties. In this study, nitrogen atoms were decorated into carbon structure by a unique ultrasonic method, then the nitrogen-doped carbon material was applied as catalyst in CO2 reduction, it exhibited excellent electrochemical activity, 4 times higher than the normal method. The improved activity should be attributed to the interaction between nitrogen and carbon atoms through analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
24--28
Opis fizyczny
Bibliogr. 29 poz., rys., wyk.
Twórcy
autor
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
- Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials (Ministry of Education), Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning Guangxi 530004, China
autor
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
autor
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
autor
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
autor
- Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials (Ministry of Education), Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning Guangxi 530004, China
autor
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090, Shanghai, China
- Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials (Ministry of Education), Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning Guangxi 530004, China
Bibliografia
- 1. Nabipour, N. & Iranshahi, D. (2017). Novel Chemical Looping Combustion Assisted Residue Fluid Catalytic Cracking Process in Order To Reduce CO2 Emission and Gasoline Production Enhancement. Energy & Fuels 31 (5), 5662–5672. DOI: 10.1021/acs.energyfuels.7b00169.
- 2. Oschatz, M. & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environ. Sci. 11 (1), 57–70. DOI: 10.1039/C7EE02110K.
- 3. Li, X., Anderson, P., Jhong, H., Paster, M., Stubbins, J. &Kenis, P. (2016). Greenhouse Gas Emissions, Energy Efficiency, and Cost of Synthetic Fuel Production Using Electrochemical CO2 Conversion and the Fischer–Tropsch Process. Energy & Fuels 30 (7), 5980–5989. DOI: 10.1021/acs.energyfuels.6b00665.
- 4. Zhao, S., Ma, L., Yang, J., Zheng, D., Liu, H. & Yang, J. (2017). Mechanism of CO2 Capture Technology Based on the Phosphogypsum Reduction Thermal Decomposition Process. Energy & Fuels 31 (9), 9824–9832. DOI: 10.1021/ acs.energyfuels.7b01673.
- 5. Gong, J., Zhang, L. & Zhao, Z. (2017). Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and Related Reaction Mechanisms. Angewandte Chemie International Edition. DOI: 10.1002/anie.201612214.
- 6. Kornienko, N., Zhao, Y., Kley, C.S., Zhu, C., Kim, D., Lin, S., Chang, C.J., Yaghi, O.M. & Yang, P. (2015). Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137 (44), 14129–35. DOI: 10.1021/jacs.5b08212
- 7. Vasileff, A., Yao, Z. & Shi, Z. (2017). Carbon Solving Carbon’s Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2. Adv. Energy Mater. 7 (21), 1700759. DOI: 10.1002/aenm.201700759
- 8. Gutiérrez-Guerra, N., Moreno-López, L., Serrano-Ruiz, J., Valverde, J. & de Lucas-Consuegra, A. (2016). Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes. Appl. Catal. B: Environ. 188, 272–282. DOI: 10.1016/j.apcatb.2016.02.010.
- 9. Gao, S., Lin, Y., Jiao, X., Sun, Y., Luo, Q., Zhang, W., Li, D., Yang, J. & Xie, Y. (2016). Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529 (7584), 68. DOI: 10.1038/nature16455.
- 10. Lin, S., Diercks, C., Zhang, Y., Kornienko, N., Nichols, E., Zhao, Y., Paris, A., Kim, D., Yang, P., Yaghi, O. & Chang, C. (2015). Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349 (6253), 1208–1213. DOI: 10.1126/science.aac8343.
- 11. Gao, D., Zhou, H., Wang, J., Miao, S., Yang, F., Wang, G., Wang, J. & Bao, X. (2015). Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles. J. Amer. Chem. Soc. 137 (13), 4288. DOI: 10.1021/jacs.5b00046.
- 12. Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S. & Dai, L. (2016). Edgerich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52 (13), 2764–2767. DOI: 10.1039/c5cc09173j.
- 13. Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S. & Dai, L. (2016). Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem. Internat. Edit. 55 (17), 5277–5281. DOI: 10.1002/ange.201600687.
- 14. Li, R., Hu, D., Zhang, S., Zhang, G., Wang, J. & Zhong, Q. (2015). Spinel Manganese–Cobalt Oxide on Carbon Nanotubes as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Energy Technol. 3 (12), 1183–1189. DOI: 10.1002/ente.201500156.
- 15. Mou, S., Wu, T., Xie, J., Zhang, Y., Ji, L. & Huang, H. (2019). Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 31(36), 1903499.1–6. DOI: 10.1002/adma. 201903499.
- 16. Ji, L., Chang, L., Zhang, Y., Mou, S. & Sun, X. (2019). Electrocatalytic CO2 reduction to alcohols with high selectivity over two-dimensional Fe2P2S6 nanosheet. ACS Catal., 2019(XXXX). DOI: 10.1021/acscatal.9b03180.
- 17. Ji, L., Li, L., Ji, X., Zhang, Y., Mou, S. & Wu, T. (2020). Highly selective electrochemical reduction of co2 to alcohols on an fep nanoarray. Angew. Chemie Internat. Edit. 59(2). DOI: 10.1002/ange.201912836.
- 18. Wang, D., Wang, J., Luo, X., Wu, Z. & Ye, L. (2017). In Situ Preparation of Mo2C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chem. & Engin. 6 (1), 983–990. DOI: 10.1021/acssuschemeng.7b03317.
- 19. Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., Kaji, H. & Nishizawa, M. (2009). Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode. Chem. Phys. Letters 480 (1), 123–126. DOI: 10.1016/j.cplett.2009.08.075.
- 20. Nabae, Y., Rokubuichi, H., Mikuni, M., Kuang, Y., Hayakawa, T. & Kakimoto, M. (2013). Catalysis by Carbon Materials for the Aerobic Baeyer–Villiger Oxidation in the Presence of Aldehydes. Acs Catalysis 3 (2), 230–236. DOI: 10.1021/cs3007928.
- 21. Tashima, D., Kishita, T., Maeno,, S. & Nagasawa, Y. (2013). Mesoporous graphitized Ketjenblack as conductive nanofiller for supercapacitors. Mater. Letters 110 (11), 105–107. DOI: 10.1016/j.matlet.2013.07.121.
- 22. Li, Y., Wang, L., He, X., Tang, B., Jin, Y. & Wang, J. (2016). Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O2 batteries. J. Energy Chem. 25 (1), 131–135. DOI: 10.1016/j.jechem.2015.08.011.
- 23. Hursan, D. & Janaky, C. (2018). Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies. ACS Energy Lett 3 (3), 722–723. DOI: 10.1021/acsenergylett.8b00212.
- 24. Hao, Y., Lu, Z., Zhang, G., Chang, Z., Luo, L. & Sun, X. (2017). Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes as High-Performance Bifunctional Oxygen Catalysts. Energy Technol. 5 (8), 1265–1271. DOI: 10.1002/ente.201600559.
- 25. Chen, C., Lu, Y., Ge, Y., Zhu, J., Jiang, H., Li, Y., Hu, Y. & Zhang, X. (2016). Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries. Energy Technol. 4 (11), 1440–1449. DOI: 10.1002/ente.201600205.
- 26. Wu, J., Yadav, R., Liu, M., Sharma, P., Tiwary, C., Ma, L., Zou, X., Zhou, X., Yakobson, B. & Lou, J. (2015). Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. Acs Nano 9 (5), 5364–5371. DOI: 10.1021/acsnano.5b01079.
- 27. Zhang, S., Kang, P., Ubnoske, S., Brennaman, M., Song, N., House, R. & Meyer, T. (2014). Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Amer. Chem. Soc. 136(22), 7845–7848. DOI: 10.1021/ja5031529.
- 28. Xu, J., Kan, Y., Huang, R., Zhang, B., Wang, B., Wu, K. & Su, D. (2016). Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. Chem. Sus. Chem. 9(10), 1085–1089. DOI: 10.1002/cssc.201600202.
- 29. Bi, L., Ci, S., Cai, P., Li, H. & Wen, Z. (2018). One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Appl. Surf. Sci. 427. DOI: 10.1016/j.apsusc.2017.08.030.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91520c99-a850-40ac-bc47-21c5f32e17bb