PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent Prediction Model of the Thermal and Moisture Comfort of the Skin-Tight Garment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the efficiency and accuracy of predicting the thermal and moisture comfort of skin-tight clothing (also called skin-tight underwear), principal component analysis (PCA) is used to reduce the dimensions of related variables and eliminate the multicollinearity relationship among variables. Then, the optimized variables are used as the input parameters of the coupled intelligent model of the genetic algorithm (GA) and back propagation (BP) neural network, and the thermal and moisture comfort of different tights (tight tops and tight trousers) under different sports conditions is analysed. At the same time, in order to verify the superiority of the genetic algorithm and BP neural network intelligent model, the prediction results of GA-BP, PCA-BP and BP are compared with this model. The results show that principal component analysis (PCA) improves the accuracy and adaptability of the GA-BP neural network in predicting thermal and humidity comfort. The forecasting effect of the PCA-GA-BP neural network is obviously better than that of the GA-BP, PCA-BP, BP model, which can accurately predict the thermal and moisture comfort of tight-fitting sportswear. The model has better forecasting accuracy and a simpler structure.
Rocznik
Strony
50--58
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Donghua University, College of Fashion and Design, Shanghai, China
  • Gemtex, Ensait, Centrale Lille, F-59000 Roubaix, France
  • Donghua University, College of Fashion and Design, Shanghai, China
autor
  • Gemtex, Ensait, Centrale Lille, F-59000 Roubaix, France
  • Gemtex, Ensait, Centrale Lille, F-59000 Roubaix, France
autor
  • Minjiang University, Clothing and Design Faculty, Fuzhou, China
Bibliografia
  • 1. Awais M, Krzywinski S, Wölfling B-M, Classen E. Thermal Simulation of Close-Fitting Sportswear. Energies 2020; 13(10): 2419.
  • 2. Ahmad HS, Jamshaid H. Development of Thermo-Physiologically Comfortable Knit Structure for Sports Application. Textile and Apparel 2019; 29(2): 105-112.
  • 3. Bait SH, Shrivastava N, Behera J, Ramakrishnan V, Dayal A, Jadhav G. Development of Sportswear with Enhanced Moisture Management Properties Using Cotton and Regenerated Cellulosic Fibres. Indian Journal of Fibre & Textile Research (IJFTR) 2019; 44(1): 24-30.
  • 4. Hooper DR, Dulkis LL, Secola PJ, Holtzum G, Harper SP, Kalkowski RJ, Kraemer WJ. Roles of an Upper-Body Compression Garment on Athletic Performances. The Journal of Strength & Conditioning Research 2015; 29(9): 2655-2660.
  • 5. Šambaher N, Aboodarda SJ, Silvey DB, Button DC, Behm DG. Effect of an Ankle Compression Garment on Fatigue and Performance. The Journal of Strength & Conditioning Research 2016: 30(2): 326-335.
  • 6. Smale BA, Northey JM, Smee DJ, Versey NG, Rattray B. Compression Garments and Cerebral Blood Flow: Influence on Cognitive and Exercise Performance. European Journal of Sport Science 2018; 18(3): 315-322.
  • 7. Moria H, Chowdhury H, Alam F, et al. Contribution of Swimsuits to Swimmer’s Performance. Procedia Engineering 2010; 2(2): 2505-2510.
  • 8. Bardal LM, Reid R. Testing of Fabrics for Use in Alpine Ski Competition Suits. 9th Conference of the International Sports Engineering Association(ISEA), 2012.
  • 9. Chowdhury H, Naito K, Alam F. An Experimental Study on Speed Skating Skinsuits. Mech. Eng. Res 2015; 9, 110-114.
  • 10. Dermont T, Morizot L, Bouhaddi M, Ménétrier A. Changes in Tissue Oxygen Saturation in Response to Different Calf Compression Sleeves. Journal Of Sports Medicine, 2015.
  • 11. Nguyen LTN, Eager D, Nguyen H. The Relationship between Compression Garments and Electrocardiogram Signals During Exercise and Recovery Phase. Biomedical Engineering Online 2019; 18(1): 1-10.
  • 12. Xiong Y, Tao X. Compression Garments for Medical Therapy and Sports. Polymers 2018; 10(6): 663.
  • 13. Chang LC, Chang FJ, Hsu HC. Real-Time Reservoir Operation for Flood Control Using Artificial Intelligent Techniques. International Journal of Nonlinear Sciences and Numerical Simulation 2010; 11(11): 887-902.
  • 14. Nastasi G, Colla V, Cateni S, Campigli S. Implementation and Comparison of Algorithms for Multi-Objective Optimization Based on Genetic Algorithms Applied to the Management of An Automated Warehouse. Journal of Intelligent Manufacturing 2018; 29(7): 1545-1557.
  • 15. Kesemen O, Özkul E. Solving Cross-Matching Puzzles using Intelligent Genetic Algorithms. Artificial Intelligence Review 2018; 49(2): 211-225.
  • 16. Katoch S, Chauhan SS, Kumar V. A Review on Genetic Algorithm: Past, Present and Future. Multimedia Tools and Applications 2020; 1-36.
  • 17. Drezner Z, Drezner TD. Biologically Inspired Parent Selection in Genetic Algorithms. Annals of Operations Research 2020; 287(1): 161-183.
  • 18. Sunil Tyagi, Panigrahi SK. A Hybrid Genetic Algorithm and Back-Propagation Classifier for Gearbox Fault Diagnosis. Applied Artificial Intelligence 2017; 31:7-8, 593-612.
  • 19. Ramesh VP, Baskaran P, Krishnamoorthy A, Damodaran D, Sadasivam P. Back Propagation Neural Network Based Big Data Analytics for a Stock Market Challenge. Communications in Statistics-Theory and Methods 2019; 48(14): 3622-3642.
  • 20. Geetha V, Aprameya KS, Hinduja DM. Dental Caries Diagnosis in Digital Radiographs using Back-Propagation Neural Network. Health Information Science and Systems 2020; 8(1): 1-14.
  • 21. Madhiarasan M, Deepa SN. A Novel Criterion to Select Hidden Neuron Numbers in Improved Back Propagation Networks For Wind Speed Forecasting. Applied Intelligence 2016; 44(4): 878-893.
  • 22. Lv Z, Ding H, Wang L, Zou Q. A Convolutional Neural Network Using Dinucleotide One-Hot Encoder for Identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing 2021; 422, 214-221.
  • 23. Kumagai M, Komatsu K, Takano F, Araki T, Sato M, Kobayashi H. An External Definition of the One-Hot Constraint and Fast QUBO Generation for High-Performance Combinatorial Clustering. International Journal of Networking and Computing 20121; 11(2): 463-491.
  • 24. Gu B, Sung Y. Enhanced Reinforcement Learning Method Combining One-Hot Encoding-Based Vectors for CNN-Based Alternative High-Level Decisions. Applied Sciences 2021; 11(3): 1291.
  • 25. Okada S, Ohzeki M, Taguchi S. Efficient Partition of Integer Optimization Problems with One-Hot Encoding. Scientific Reports 2019; 9(1): 1-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91520bc9-7268-4324-a721-c0d8db4f0bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.