PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study of the Effect of DINA on the Polymorphic Transition of ε-CL-20 in Composite Modified Double Base Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract: The polymorphic transition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (CL-20) is influenced by the materials and conditions used in the preparation of propellants, and limits the application of ε-CL-20 in solid propellants. In the present work, the effect of dinitroxydiethylnitramine (DINA) on the polymorphic transition of ε-CL-20 in CMDB propellants was investigated by Raman spectroscopy and the Calvet microcalorimeter method. The performance of propellants with CL-20 as affected by DINA was studied by the theoretical prediction of their energetic parameters, stability, combustion, and mechanical tests, respectively. The results showed that the polymorphic transition temperature of ε-CL-20 to α-CL-20 can be reduced to 75 °C by DINA. Expansion of the crystal volume during the process of the ε-CL-20 to α-CL-20 transition will produce obvious cracks in the surface of the crystals. NC/NG can inhibit the effect of DINA on the polymorphic transition of ε-CL-20. The theoretically predicted results indicated that adding DINA will not lower the energy level of CMDB propellants containing CL-20. The DSC and VST results showed that CL-20 has good compatibility and thermal stability with DINA. The burning rate tests revealed that adding DINA decreases the burning rates of CMDB propellants containing CL-20. Mechanical property testing showed that adding DINA can clearly improve the mechanical properties of CMDB propellants containing CL-20. The results of these investigations suggested that DINA has no effect on the crystalline stability of ε-CL-20 in the solventless extrusion process, which contributes to a significant understanding of practical applications and provides guidance for applied research on the use of CL-20 in propellants.
Słowa kluczowe
Rocznik
Strony
165--182
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Chemistry and Chemical Engineering, Beijing institute of Technology, Xi’an Modern Chemistry Research Institute, 5 Zhongguancun South Street, Beijing, CN 1000081, China
autor
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, 168 Zhangba East Street, Xi’an, CN 710065, China
Bibliografia
  • [1] Yang, Z.W.; Wang, H.J.; Ma, Y.; Huang, Q.; Zhang, J.C.; Nie, F.D.; Zhang, J.H.; Li, H.Z. Isomeric Cocrystals of CL-20: A Promising Strategy for Development of High-Performance Explosives. Cryst. Growth Des. 2018, 18(11): 6399-6403.
  • [2] Liu, D.Y.; Chen, L.; Wang, C.; Wu, J.Y. Detonation Reaction Characteristics for CL-20 and CL-20-based Aluminized Mixed Explosives. Cent. Eur. J. Energ. Mat. 2017, 14(3): 573-588.
  • [3] Ghosh, M.; Venkatesan, V.; Mandave, S.; Banerjee, S.; Sikder, N.; Sikder, A.K.; Bhattacharya, B. Probing Crystal Growth of Epsilon- and Alpha-CL-20 Polymorphs via Metastable Phase Transition Using Microscopy and Vibrational Spectroscopy. Cryst. Growth Des. 2014, 14(10): 5053-5063.
  • [4] Maksimowski, P.; Skupinski, W.; Szczygielska, J. Comparison of the Crystals Obtained by Precipitation of CL-20 with Different Chemical Purity. Propellants Explos., Pyrotech. 2013, 38(6): 791-797.
  • [5] Zhang, J.Y.; Guo, X.Y.; Jiao, Q.J.; Zhang, H.L.; Li, H. Analysis of the Thermal Behaviour of CL-20, Potassium Perchlorate, Lithium Perchlorate and their Admixtures by DSC and TG. Cent. Eur. J. Energ. Mat. 2018, 15(1): 115-130.
  • [6] Doriath, G. Energetic Insensitive Propellants for Solid and Ducted Rockets. J. Propul. Power 1995, 11(4): 870-882.
  • [7] Lurnan, J.R.; Wehrman, B.; Kuo, K.K.; Yetter, R.A.; Masoud, N.M.; Manning, T.G.; Harris, L.E.; Bruck, H.A. Development and Characterization of High Performance Solid Propellants Containing Nano-sized Energetic Ingredients. Proc. Combust. Inst. 2007, 31(2): 2089-2096.
  • [8] Xing, X.L.; Zhao, F.Q.; Ma, S.N.; Xu, S.Y.; Xiao, L.B.; Gao, H.X.; Hu, R.Z. Thermal Decomposition Behavior, Kinetics, and Thermal Hazard Evaluation of CMDB Propellant Containing CL-20 by Microcalorimetry. J. Therm. Anal. Calorim. 2012, 110(3): 1451-1455.
  • [9] Kalman, J.; Essel, J. Influence of Particle Size on the Combustion of CL-20/HTPB Propellants. Propellants Explos., Pyrotech. 2017, 42(11): 1261-1267.
  • [10] Zhou, S.P.; Pang, A.M.; Tang, G. Crystal Transition Behaviors of CL-20 in Polyether Solid Propellants Plasticized by Nitrate Esters Containing Both HMX and CL-20. New J. Chem. 2017, 41(24): 15064-15071.
  • [11] Shiyao, N.; Hongxu, G.; Wengang, Q.; Na, L.; Fengqi, Z. Research Progress on Behavior and Mechanism of Crystal Transformation of CL-20. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2017, (05): 1-7.
  • [12] Liu, G.R.; Li, H.Z.; Gou, R.J.; Zhang, C.Y. Packing Structures of CL-20-based Cocrystals. Cryst. Growth Des. 2018, 18(11): 7065-7078.
  • [13] Kholod, Y.; Okovytyy, S.; Kuramshina, G.; Qasim, M.; Gorb, L.; Leszczynski, J. An Analysis of Stable Forms of CL-20: A DFT Study of Conformational Transitions, Infrared and Raman Spectra. J. Mol. Struct. 2007, 843(1-3): 14-25.
  • [14] Foltz, M.F.; Coon, C.L.; Garcia, F.; Nichols III, A.L. The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part II. Propellants Explos., Pyrotech. 1994, 19: 133-144.
  • [15] Li, J.; Brill, T.B. Kinetics of Solid Polymorphic Phase Transitions of CL-20. Propellants Explos., Pyrotech. 2007, 32(4): 326-330.
  • [16] Liu, Y.; Li, S.C.; Wang, Z.S.; Xu, J.J.; Sun, J.; Huang, H. Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-Ray Powder Diffraction. Cent. Eur. J. Energ. Mat. 2016, 13(4): 1023-1037.
  • [17] Zhang, P.; Xu, J.J.; Guo, X.Y.; Jiao, Q.J.; Zhang, J.Y. Effect of Additives on Polymorphic Transition of Epsilon-CL-20 in Castable Systems. J. Therm. Anal. Calorim. 2014, 117(2): 1001-1008.
  • [18] Zheng, X.; Yu, S.J.; Wen, W.; Wen, Y.S.; Wang, P.; Lan, L.G.; Dai, X.G.; Han, Y.; Li, J.M.; Li, Y.B. Sensitivity and Phase Transition of Heated Epsilon-CL-20 in Drop-Weight Impact Test. Propellants Explos., Pyrotech. 2018, 43(11): 1164-1170.
  • [19] Zhang, J.Y.; Guo, X.Y.; Jiao, Q.J.; Zhang, P. Phase Transitions of Epsilon-HNIW in Compound Systems. AIP Adv. 2016, 6, paper 055016: 1-10.
  • [20] Turcotte, R.; Vachon, M.; Kwok, Q.; Wang, R.P.; Jones, D. Thermal Study of HNIW (CL-20). Thermochim. Acta 2005, 433(1-2): 105-115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91516f76-2424-41d5-ad3f-a1986d2d0b25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.