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Abstract: In this paper, we study an inventory system for two
substitutable deteriorating items where when an item is out of stock,
the demand for it is met by the other item and any part of demand
not met due to unavailability of the other item is lost. The level of
inventory of both items deplete due to combined effect of demand
fulfilment and deterioration. The rates of demand and deterioration
are assumed to be deterministic and constant. Items are ordered
jointly in each ordering cycle so as to take advantage of joint re-
plenishment. The problem is formulated and a solution procedure
is developed to determine the optimal ordering quantities that min-
imize the total inventory cost. An extensive numerical analysis is
carried out to illustrate the parameters of the model. The results
indicate that there is substantial improvement in the optimal total
cost of the inventory system with substitution over the case without
substitution.

Keywords: inventory control, substitutable items, deteriora-
tion, optimal ordering quantities, joint replenishment

1. Introduction

In supermarkets or in retail, the occurrence of temporary stock-outs is a very
common phenomenon in the categories of frequently purchased items and it is
also very common to see, at any retail outlet or supermarket, customers who,
willing to purchase certain items, will be willing to purchase the substitute items,
if they face the situation of the stock-outs. A survey report of Anupindi (1998)
observed this phenomenon, and it was found that 82-88% of buyers would be
willing to buy the substitute items if the desired items are out of stock. This
phenomenon of demand substitution can happen under a variety of conditions.
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In stochastic conditions, an item is substituted by another item to avoid or
minimize the effects of shortages, occurring due to uncertainty in the system,
whereas in deterministic cases, a portion of demand is substituted by another
item in a planned manner. In both of these cases, it is noted that an item
could either be completely substituted or partially substituted by another item.
Accordingly, Kim and Bell (2011) categorize the substitution as symmetrical
substitution and asymmetrical substitution. Besides cost related reasons, there
could, some times, be some marketing motives that involve item substitutions.
The substitutable items, in which sufficient deterioration can take place during
the normal storage period of the items and consequently losses may occur in
significant amount, need to be taken into account when formulating and ana-
lyzing the inventory system of substitutable items for determining the accurate
optimal ordering quantities. As can be easily understood, the phenomenon of de-
mand substitution would involve multiple items (at least two). Once more than
one item is considered, there arises the issue of replenishment policy, meaning:
should the items be procured independently, jointly or in a coordinated manner.

This paper formulates a model of the two deteriorating items inventory sys-
tem with partial substitution, and for substitution we consider asymmetrical
stock out based substitution, together with joint replenishment for the devel-
opment of the inventory model. The system parameters are assumed to be
constant.

The inventory modelling of substitutable deteriorating items has not found
sufficient place in the literature of inventory modelling of substitutable items.
To the best of our knowledge no one has considered the concept of deterioration
for the inventory modelling of substitutable items with joint replenishment for
asymmetrical stock out based substitution. There is a huge amount of literature
available in inventory modelling of substitutable items and deteriorating items
separately. Thus, in the subsequent paragraph first we discuss the recent and
previous advancements in the inventory modelling of deteriorating items, and
then in inventory modelling of substitutable items.

The first inventory model was developed by Harris (1915) in the second
decade of the twentieth century and this model was generalized byWilson (1934)
by deriving the formula to obtain the economic order quantity (EOQ). The in-
ventory model for the deteriorating items was first studied by Whitin (1957),
who considered the fashion goods as deteriorating items. Further, there have
been several researchers, who developed different inventory models of deterio-
rating items under different realistic situations. The reader may wish to consult
the review papers on inventory of deteriorating items, written by Raafat (1991),
Goyal and Giri (2003), Li et al. (2010), and Bakker et al. (2012), and Khan-
larzade et al.(2014) for a detailed review of the literature on the inventory of
deteriorating items. Recently, Taleizadeh (2014a, b, c), Tat et al. (2015), and
Taleizadeh (2016) developed the deteriorating items inventory models incorpo-
rating some more realistic and market driven situations.

The literature of substitutable items can be categorised as referring to joint
replenishment policies with and without substitution. Under joint replenishment
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policies (JRP) with substitution, Drezner et al. (1995) developed an EOQmodel
with substitution for two substitutable items and compared the results with no
substitution and proved that full substitution is never optimal. Gurnani and
Drezner (2000) extended the model of Drezner et al. (1995) for multiple items.
The major assumption of their models is one-to-one substitution among items,
where unmet demand of one item is fully converted to that of the other. In
view of the fact that in realistic situations of substitution, most of the time
the demand for an item would only be partially converted to the demand of
the other, Salameh et al. (2014) extended the model of Drezner et al. (1995)
by considering the phenomenon of partial substitution. Recently, Rasoulia and
Nakhai-Kamalabadi (2014) and Krommyda et al. (2015) developed inventory
models similar to that of Salameh et al. (2014), considering, however, more
realistic cases of demand dependent on price as well as on stock.

This paper makes the model of Krommyda et al. (2015), Salameh et al.
(2014), as well as Rasoulia and NakhaiKamalabadi (2014) still more realistic and
applicable, by taking into account the effect of deterioration on substitutable
items of the inventory. Demand is considered as a constant function for both
of the mutually substitutable items. If one of the items is out of stock, then its
demand will be fulfilled by the second item, and if any demand is not met by
the substitutable item, it will be completely lost. Both items are ordered jointly
and replenishment cycle is the same for both items.

Regarding the replenishment policy under multiple item case, plenty of work
has been reported under the category of JRP (joint replenishment policy), but
without substitution. One may refer to Khouja and Goyal (2008) for a detailed
review. They have categorized the work on JRP by including the studies done
between 1989 and 2005. In one of the recent developments in the context of JRP
formulation, Porras and Dekker (2008) developed a model, in which they intro-
duced a correction factor in cost function for empty replenishment and showed
that there is some improvement in the optimal quantity over their own earlier
work (Porras and Dekker, 2003), when no such consideration was incorporated.
In most of the previous studies, related to JRP, the optimal ordering quanti-
ties have been obtained by some heuristic search algorithms. Hong and Kim
(2009) developed a closed form formula to obtain the optimal order quantities
using unbiased estimator and genetic algorithm. Further, it has been shown by
Schulz and Telha (2011) that the complexity of obtaining the optimal quanti-
ties increases exponentially (no polynomial time) with respect to the time for
deterministic demand.

While the inventory models of substitution with stochastic demand have
been studied by many researchers, the major contributions that ought to be
mentioned are as follows: Parlar and Goyal (1984), Pasternack and Drezner
(1991), Ernst and Kouvelis (1999), Gerchack and Grosfeld (1999), Mishra and
Raghunathan (2004). Zhao et al. (2014) have studied the model for two items,
while Ye (2014), Huang and Ke (2014), Li et al. (2013), Li and You (2012),
Hsieh (2011), Xue and Song (2007) have developed the inventory policy for
multiple substitutable items.
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The rest of the paper is organized as follows: In the next section we describe
the assumptions and notations used in the entire article, Section 3 gives the
problem description and mathematical formulation of the model, while Section
4 describes the details of the solution procedure with the proof of pseudo con-
vexity of the total cost function. Then, Section 5 provides a numerical example,
accompanied by the sensitivity analysis of the model and the article ends with
summary and conclusions from the study.

2. Assumptions and notation

For the mathematical formulation of the proposed inventory model, the following
assumptions and notation are used.

Assumptions

1. The two items considered are ordered jointly in every ordering cycle.
2. The demand rates and the deterioration rates are known and constant for

both items.
3. The procurement lead time is zero and replenishment rates for both items

are infinite.
4. When an item is completely depleted and it subsequently becomes out of

stock and there is on-hand inventory of the second item available, then the
second item, while being supplied to fulfil its own demand, substitutes for
the demand of the first item during stock out period. This substitution
need not be the full substitution. It can be limited to a fraction (known
as the substitution rate) of the total demand for the first item during the
stock out period. The remaining un-substituted demand for the first item
is lost.

5. Both items are mutually substitutable, that is, each one can substitute
the other in the case of a lack of stock. However, the rates of substitution
may differ.

Notation
Notation is grouped into parameters of the system, intermediate variables,

derived functions and objective functions, and is accordingly presented in Table
1.

3. Problem description and mathematical formulation

As stated before, we consider an inventory system with two mutually substi-
tutable deteriorating items under the assumptions mentioned in Section 2. The
inventory diagrams for the possible situations (item 1 substituted by item 2,
item 2 substituted by item 1 and no substitution) are shown in Figs. 1, 2,
and 3, respectively. In this inventory system, at the beginning of the replenish-
ment cycle the retailer orders Q1 and Q2 units of item 1 and item 2, respectively,
whose respective consumption rates areD1 andD2. The inventory levels of both
items gradually deplete due to deterioration and consumption. There are three
possible cases (two with substitution and one without substitution), namely:



Optimal ordering quantities for substitutable deteriorating items under joint replenishment 53

Table 1. Notation

Parameters

D1, D2 Demand rates.

θ Deterioration rate of item 1 and 2.

α1, α2 Substitution rate of item 1 by item 2 and vice
versa.

Q1, Q2 Ordering quantities of item 1 and 2.

A1, A2 Fixed ordering cost per order of item 1 and item
2.

h1, h2 Holding cost per unit of item 1 and item 2.

C1, C2 Item cost per unit of item 1 and item 2.

π1, π2 Shortage cost per unit of item 1 and item 2.

Intermediate variables

P Portion of time, during which substitution occurs.

t1 Time, when the level of inventory of the substi-
tuted item is zero.

t2 Time, when the level of inventory of substitute
item is completely depleted in the case of no sub-
stitution.

Z Inventory level of an item when the other item is
out of stock.

Derived functions

I11 (t) Inventory level of item 1 when Q1 depletes before
Q2 at time t, 0 ≤ t ≤ t1.

I12 (t) Inventory level of item 2 when Q1 depletes before
Q2 at time t, 0 ≤ t ≤ t1.

I13 (t) Inventory level of item 2 when Q1 depletes before
Q2 and substitution takes place at time t, 0 ≤ t ≤

t1 + p.

I21 (t) Inventory level of item 1 when Q2 depletes before
Q1 at time t, 0 ≤ t ≤ t2.

I22 (t) Inventory level of item 2 when Q2 depletes before
Q1 at time t, 0 ≤ t ≤ t2.

I23 (t) Inventory level of item 1 when Q2 depletes before
Q1 and substitution takes place at time t, 0 ≤ t ≤

t2 + p.

Objective functions

TC(Q1,Q2) Total cost per cycle with substitution for the case
when item 1 is substituted by item 2.

TC1(Q1,Q2) Total average annual cost for the case when item
1 is substituted by item 2.

TC2(Q1,Q2) Total average annual cost for the case when item
2 is substituted by item 1.

TCWS(Q1,Q2) Total average annual cost without substitution.
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Case 1 : Q1 depletes before Q2, i.e. if at time t1 the inventory of item 1 is
out of stock, as depicted in Fig. 1, then item 2 partially substitutes item 1 with
substitution rate α1. A portion of unmet demand for item 1 is assumed to be
lost with the rate (1-α1).

Case 2 : Q2 depletes before Q1, i.e. if at time t2 the inventory of item 2 is
out of stock, as depicted in Fig. 2, then item 1 partially substitutes item 2 with
substitution rate α2. A portion of unmet demand for item 2 is assumed to be
lost with the rate (1-α2).

Case 3 : Q1 and Q2 deplete simultaneously (as depicted in Fig. 3), i.e. items
1 and 2 can never go out of stock individually, and thus there is no substitution
of any of the items.

Figure 1. First scenario of the inventory model, when t1<t2

The derivations of the total annual costs for the three cases are discussed
below.

3.1. Case 1 (Fig. 1): Q1 depletes before Q2 (with substitution)

The average total cost is derived in the usual manner i.e. by summing the various
cost components per cycle and then by multiplying it by the average number of
cycles per year. To determine the various cost components, we determine the
inventory level during the cycle time of inventory.

The inventory levels of item 1 and item 2 for this situation is governed by
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the following differential equations

dI1

1
(t)

dt
+ θI1

1
(t) = −D1 ; 0 ≤ t ≤ t1

with boundary condition I11(0) = Q1 and I11(t) = 0.
(1)

dI1

2
(t)

dt
+ θI1

2
(t) = −D2 ;0 ≤ t ≤ t1

with boundary condition I12(0) = Q2 and I12(t1) = I13(t1).
(2)

dI1

3
(t)

dt
+ θI1

3
(t) = −(D2+α1D1) ;t1 ≤ t ≤ t1 + p

with boundary condition I13(t1) = I12(t1) and I13(t1 + p) = 0.
(3)

The solutions of equations (1), (2) and (3) are:

I1
1
(t) =

D1

θ

(

eθ(t1−t) − 1
)

; 0 ≤ t ≤ t1 (4)

I1
2
(t) =

(Q2θ +D2)

θeθt
−

D2

θ
; 0 ≤ t ≤ t1 (5)

I1
3
(t) =

D2+α1D1

θ

(

eθ(t1+p−t) − 1
)

; t1 ≤ t ≤ t1 + p. (6)

The cost components per cycle consist of (a) costs related to item 1, (b) costs
related to item 2, and (c) the shortage cost.

(a) The total cost associated with item 1 per ordering cycle consists of the
fixed ordering cost, and holding cost, and can be expressed as

Total cost associated with item 1 =

A1 +
h1

θ2

(

θQ1 −D1 ln

(

θQ1 +D1

D1

))

(7)

(b) The total cost associated with item 2 per ordering cycle consists of the
fixed ordering cost and holding cost and can be expressed in terms of a given
Q1 as

Total cost associated with item 2 =




A2 +
h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))

−h2(D1α1+D2)
θ2 ln

(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

)



 (8)

(c) The shortage cost/cost of lost sales is incurred due to the demand for
item 1, which is not satisfied at a cost of π1 per unit lost, which can be expressed
as

Shortage cost =

π1D1

θ

(

(1− α1) ln

(

D1(α1θQ1 +D1α1 + θQ2 +D2)

(D1α1 +D2)(θQ1 +D1)

))

(9)
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Thus, the total cost per ordering cycle TC (Q1, Q2), from Eqs. (7), (8) and (9)
is given as

TC(Q1, Q2) =

















A1 +A2 +
h1

θ2

(

θQ1 −D1 ln
(

θQ1+D1

D1

))

+h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))

−h2(D1α1+D2)
θ2 ln

(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

)

+π1D1

θ

(

(1− α1) ln
(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

))

















(10)

Finally, for case 1 (when t1<t2), TC1(Q1,Q2), the average total cost per unit
time (say, a year) is obtained by multiplying the total cost per ordering cycle
by the average number of cycles per year, that is

θ

/

ln

(

α1θQ1 +D1α1 + θQ2 +D2

D1α1 +D2

)

and is given as

TC1(Q1, Q2) =
θ

ln
(

α1θQ1+D1α1+θQ2+D2

D1α1+D2

)

















A1 +A2 +
h1

θ2

(

θQ1 −D1 ln
(

θQ1+D1

D1

))

+h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))

−h2(D1α1+D2)
θ2 ln

(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

)

+π1D1

θ

(

(1− α1) ln
(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

))

















(11)

3.2. Case 2 (Fig. 2): Q2 depletes before Q1 (with substitution)

Following the approach analogous to that for case 1, now for case 2 (when
t1>t2), TC2(Q1, Q2), we obtain that the average total cost per unit time (say
a year) is equal

TC2(Q1, Q2) =
θ

ln
(

α2θQ2+D2α2+θQ1+D1

D2α2+D1

)

















A1 +A2 +
h2

θ2

(

θQ2 −D2 ln
(

θQ2+D2

D2

))

+h1

θ2

(

θQ1 −D1 ln
(

θQ2+D2

D2

))

−h1(D2α2+D1)
θ2 ln

(

D2(α2θQ2+D2α2+θQ1+D1)
(D2α2+D1)(θQ2+D2)

)

+π2D2

θ

(

(1− α2) ln
(

D2(α2θQ2+D2α2+θQ1+D1)
(D2α2+D1)(θQ2+D2)

))

















(12)
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Figure 2. Second scenario of the inventory model, when t1>t2

Figure 3. Scenario without substitution under joint replenishment

3.3. Case 3 (Fig. 3): Q1 and Q2 deplete simultaneously (no substi-
tution)

Figure 3 illustrates the inventory levels for the here considered case of no substi-
tution. Under a joint replenishment policy, the inventories of both items deplete
to zero simultaneously, i.e. Q1/D1 = Q2/D2.
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The average total cost per unit time for an inventory system without substi-
tution under joint replenishment, TCWS(Q1,Q2), consists only of fixed ordering
cost and holding cost, and is given as

TCWS(Q1, Q2) =

θ

ln
(

θQ1+D1

D1

)





A1 +A2 +
h1

θ2

(

θQ1 −D1 ln
(

θQ1+D1

D1

))

+h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))



 . (13)

4. Solution procedure

To derive the solution for total cost function in order to obtain the optimal
ordering quantities, we use the result on pseudo convexity as provided in Bazaraa
et al. (2013), which states as follows “If f : Rn → R is pseudo convex at x then
x is the global minimum if and only if ∇f(x) = 0” and “If f : Rn → R is twice
differentiable at xand ∇f(x) = 0, and the Hessian Matrix H(x) is positive
definite then x is strict local minimum”, where ∇f(x) is the function gradient
vector.

Using these properties we show next that the total cost functions TC1(Q1,Q2)
and TC2(Q1,Q2) are pseudo convex functions with reasonable conditioning and
thus they both attain a unique optimal solution.

Theorem 1 The total cost TC1(Q1,Q2) is pseudo convex if h2 (D1α1 +D2) >
π1D1θ (1− α1).

Proof See Appendix 1A.

Theorem 2 The total cost TC2(Q1,Q2) is pseudo convex if h1 (D2α2 +D1) >
π2D2θ (1− α2).

Proof See Appendix 1B.

Since the total cost functions TC1(Q1,Q2) and TC2(Q1,Q2) are pseudo convex
functions, then with the help of the following algorithm we can obtain the value
of unique optimal ordering quantities (Q∗

1, Q
∗

2).

Algorithm for obtaining optimal ordering quantities
STEP1: Initialize all constant parameter of the model.
STEP2: Solve the constraint optimization problems

P1 : Find(Q1, Q2) that min
Q1,Q2

TC1(Q1, Q2) subject to
Q1

D1
≤

Q2

D2

and

P2 : Find (Q1, Q2) that min
Q1,Q2

TC2(Q1, Q2) subject to
Q1

D1
≥

Q2

D2
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STEP3: Obtain the optimal ordering quantities(Q∗

1, Q
∗

2)as Min(P1, P2).

STEP4: Exit from the algorithm.

5. Numerical example and sensitivity analysis

In this section we provide a numerical example, intended to illustrate the pro-
posed model. (Maple mathematical modelling software was used to carry out the
illustrative calculations.) In numerical example we use the values of parameter
as defined in Table 1, unless otherwise mentioned.

Table 2. Initial parameters used for numerical analysis
Parameter Item 1 Item 2
Consumption rate(D1,D2) 200 100
Deterioration rate (θ) 0.01 0.01
Substitution rate(α1,α2) 0.2 0.8
Setup cost (A1,A2) 300 300
Holding cost (h1,h2) 2 2
Shortage cost(π1, π2) 1 4

According the algorithm as defined above; we solve the constraint opti-
mization problem of step 2 by using Maple mathematical software. The so-
lution of the first optimization problem (P1) is Q1 = 100.00, Q2 = 260.94,
TC1(Q1,Q2) = 721.89, and solution of the second optimization problem (P2)
is Q1 = 283.50, Q2 = 141.75, TC2(Q1,Q2) = 850.52. Comparing the obtained
total cost of (P1, P2) in step 3 of the algorithm, we can see that P1 attained the
optimal solution and corresponding ordering quantities are the optimal ordering
quantities. Thus, the optimal ordering quantities in this numerical example are
(Q∗

1, Q
∗

2) = (100.00, 260.94) with the optimal total cost equal 721.89. The op-
timal ordering quantities and optimal total cost (using equation (13)) without
substitution, under the same environment, is Q1ws = 283.50, Q2ws = 260.94,
TCws(Q1,Q2) = 850.52 and the difference in total optimal cost compared to the
case with substitution is 128.63 and improvement is 15.12 in percentage points.

In Figs. 5, 6 and 7 we plot the values of total cost function TC1(Q1, Q2)
with different values of ordering quantities. The behaviour of the total cost
function TC1(Q1, Q2) is as convex function. These figures verify the result as
we derived in theorem 1. Thus total cost function TC1(Q1,Q2) always leads to
the unique optimal solution.

The sensitivity analysis, whose results are shown in Table 3, regarding the
parameters of the model, indicates that the proposed model is quite stable.
The optimal total cost of the model is increases as the value of setup cost,
substitution rate, deterioration rate increases and optimal total cost of the model
is decreases as the value of holding cost, shortage cost increases.
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Figure 4. Total cost (TC1) vs. Q1 at fixed Q2

Figure 5. Total cost (TC1) vs. Q2 at fixed Q1
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Table 3. Sensitivity analysis for optimal total cost and optimal ordering quan-
tities

Pa-

ra-

me-

ter

Para-

meter

value

Optimal total cost
and optimal order-
ing quantities with
substitution

Optimal total cost
and optimal ordering
quantities without
substitution

Impro-

vement

(%) in

optimal

total

cost

TC1 Q∗

1 Q∗

2 TCWS Q∗

1ws Q∗

2ws

A1

300.00 721.89 100.00 260.94 850.52 283.50 141.75 15.12
400.00 814.93 100.00 307.46 982.45 327.48 163.74 17.05
500.00 896.43 100.00 348.21 1098.77 366.25 183.12 18.42
600.00 969.85 100.00 384.92 1203.99 401.33 200.66 19.45
700.00 1037.24 100.00 418.62 1300.80 433.60 216.80 20.26

h1

2.00 721.89 100.00 260.94 850.52 283.50 141.75 15.12
4.00 967.92 49.99 191.98 1201.99 200.33 100.16 19.47
6.00 1154.73 33.33 159.12 1471.69 163.52 81.76 21.54
8.00 1311.57 25.00 138.94 1699.05 141.58 70.79 22.81
10.00 1449.45 20.00 124.94 1899.36 126.62 63.31 23.69

α1

0.20 721.89 100.00 260.94 850.52 283.50 141.75 15.12
0.30 743.24 100.00 271.62 850.52 283.50 141.75 12.61
0.40 762.55 100.00 281.27 850.52 283.50 141.75 10.34
0.50 780.17 100.00 290.08 850.52 283.50 141.75 8.27
0.60 796.37 100.00 298.18 850.52 283.50 141.75 6.37

π1

1.00 721.89 100.00 260.94 850.52 283.50 141.75 15.12
2.00 818.15 200.00 209.07 850.52 283.50 141.75 3.81
3.00 850.52 283.50 141.75 850.52 283.50 141.75 0.00
4.00 850.52 283.50 141.75 850.52 283.50 141.75 0.00
5.00 850.52 283.50 141.75 850.52 283.50 141.75 0.00

θ

0.01 721.89 100.00 260.94 850.52 283.50 141.75 15.12
0.05 729.42 100.00 264.71 858.47 286.15 143.07 15.03
0.10 738.71 100.00 269.35 868.30 289.43 144.71 14.92
0.15 747.87 100.00 273.93 878.02 292.67 146.33 14.82
0.20 756.92 100.00 278.46 887.64 295.88 147.94 14.73
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Figure 6. Total cost (TC1) vs. ordering quantities of item 1 and item 2

Now we investigate the improvement in total cost with substitution and
without substitution with respect to the various parameters of the system. The
results are shown in Figs. 7, 8 and 9.

6. Summary and conclusions

In this paper, we have presented an inventory decision policy for two substi-
tutable deteriorating items under joint replenishment in each replenishment
cycle. The inventory decision policy has been mathematically formulated and a
solution procedure has been developed for obtaining the optimal ordering quan-
tities. The numerical example has been carried out to illustrate the properties
of the model and the optimal total cost, resulting from the model, has also
been compared numerically with the model having no substitution. Sensitivity
analysis of the model indicated that model is quite stable with respect to the
respective parameters. The model should be very useful for the managers of
warehouses for the inventory decisions concerning deteriorating substitutable
items, as it enables to optimize the outcome of their businesses.

In addition, as this paper only considered two items with joint replenish-
ment in the same replenishment cycle, the future investigations can focus on
more than two items, different replenishment cycles for different product having
multiple suppliers, trade credit mechanism, supplier-retailer cooperation, and
some other realistic market driven situations.
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Figure 7. Improvement (%) in TC over TCWS with variation in setup cost (A1)
and holding cost (h1)
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Appendix A. Proof of pseudo convexity of total cost func-

tion

Proof of Theorem 1.

The total cost per unit time in per ordering cycle for Case 1 is (from equation
(11) :

TC1(Q1, Q2) =
θ

ln
(

α1θQ1+D1α1+θQ2+D2

D1α1+D2

)

×

















A1 +A2 +
h1

θ2

(

θQ1 −D1 ln
(

θQ1+D1

D1

))

+h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))

−h2(D1α1+D2)
θ2 ln

(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

)

+π1D1

θ

(

(1− α1) ln
(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

))

















.

This equation can be rewritten as follows:

TC1(Q1, Q2) =
TC1∗(Q1, Q2)

ln
(

α1θQ1+D1α1+θQ2+D2
D1α1+D2

)

θ

, where

TC1∗(Q1, Q2) =

















A1 +A2 +
h1

θ2

(

θQ1 −D1 ln
(

θQ1+D1

D1

))

+h2

θ2

(

θQ2 −D2 ln
(

θQ1+D1

D1

))

−h2(D1α1+D2)
θ2 ln

(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

)

+π1D1

θ

(

(1− α1) ln
(

D1(α1θQ1+D1α1+θQ2+D2)
(D1α1+D2)(θQ1+D1)

))

















.

Clearly, in the above equation

ln

(

α1θQ1 +D1α1 + θQ2 +D2

D1α1 +D2

)/

θ

is a positive concave function. Since the ratio of positive convex function
over positive concave function is a strong pseudo convex function (Chandra,
1972), so, to prove the pseudo convexity of TC1(Q1,Q2), here we prove that
TC1∗(Q1,Q2) is a positive convex function, and for the convexity ofTC1∗(Q1,Q2)
we prove that all the principal minors of the Hessian matrix of TC1∗(Q1,Q2)
are non-negative. The H-matrix of function TC1∗(Q1,Q2) is defined as

H =





∂2TC1∗(Q1,Q2)
∂Q2

1

∂2TC1∗(Q1,Q2)
∂Q1∂Q2

∂2TC1∗(Q1,Q2)
∂Q2∂Q1

∂2TC1∗(Q1,Q2)
∂Q2

2


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∂TC1∗(Q1, Q2)

∂Q1
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1

(α1θQ1 +D1α1 + θQ2 +D2)(θQ1 +D1)

×
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The determinant of the H-matrix of TC1∗(Q1,Q2) is
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
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{from (A)}.

Thus,

h2 (D1α1 +D2) > π1D1θ (1− α1)

This completes the proof. ✷

Appendix B.

Proof of Theorem 2:

This proof is similar to the proof of Theorem 1.


