Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the control problem for omnidirectional 3-wheel autonomous mobile robots is solved with the use of (i) a nonlinear optimal control method (ii) a flatness-based control approach which is implemented in successive loops. To apply method (i) that is nonlinear optimal control, the dynamic model of the omnidirectional 3-wheel autonomous mobile robots undergoes approximate linearization at each sampling instant with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrix. The linearization point is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. To compute the feedback gains of the optimal controller an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. The global stability properties of the nonlinear optimal control method are proven through Lyapunov analysis. To implement control method (ii), that is flatness-based control in successive loops, the state-space model of the omnidirectional 3-wheel autonomous mobile robot is separated into chained subsystems, which are connected in cascading loops. Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input-output linearized flat systems. The state variables of the preceding (i-th) subsystem become virtual control inputs for the subsequent (i+1-th) subsystem. In turn, exogenous control inputs are applied to the last subsystem. The whole control method is implemented in successive loops and its global stability properties are also proven through Lyapunov stability analysis. The proposed method achieves trajectory tracking and autonomous navigation for the omnidirectional 3-wheel autonomous mobile robots without the need of diffeomorphisms and complicated state-space model transformations.
Rocznik
Tom
Strony
22--46
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- Unit of Industrial Automa‐ tion, Industrial Systems Institute, 26504, Rion Patras, Greece
autor
- Dept. of ECS Engineering, Rensselaer Polytechnic Institute, 12065, Troy, New York USA
Bibliografia
- [1] C. Ren, X. Li, X. Yiang and S. Ma, Extended state observer-based sliding-mode control of an omnidirectional mobile robot with friction compensation, IEEE Transactions on Industrial Electronics, vol. 66, no. 17, pp. 9580-9489, 2019.
- [2] H. Kim and B.K. Kim, Online minimum Energy trajectory planning and control on a straightline path for three-wheeled omnidirectional mobile robots, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4721-4779, 2014.
- [3] C. Ren, Y. Ding and S. Ma, A structure improved extended state observer-based control with application to an omnidirectional mobile robot, ISA Transactions, Elsevier, vol. 101, pp. 335-345, 2020.
- [4] J.C. Lins Barreto, A.G. Scolari Conceicao, C.E.T. Dorea, L. Martinez and E.R. de Pieri, Design and implementation of Model Predictive Control with friction compensation of an omnidirectional mobile robot, IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 462-476, 2014.
- [5] K.B. Kim and B.K. Kim, Minimum-time trajectory of three-wheel omnidirectional mobile robots following a bounded curvature path with a referenced heading proϔile, IEEE Transactions on Robotics, vol. 27, no. 6, pp. 800-808, 2011.
- [6] M. El-Sayyah, M.E. Saad and M. Saad, Enhanced MPC for omnidirectional robot motion tracking using Laguerre functions and non-iterative linearization, IEEE Access, vol. 10, pp. 118290-118302, 2022.
- [7] H.C. Huang, SoPC based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robot, IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1828-1835, 2013.
- [8] M. Hamaguchi, Damping and transfer control system with parallel linkage mechanism-based active vibration reducer for omnidirectional wheeled robots, IEEE/ASME Transactions on Mechatronis, vol. 23, no. 4, pp. 2424-2435, 2019.
- [9] T. Kalmar-Nagy, R.D. Andreu and P Ganguly, Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle, Robotics and Autonomous Systems, Elsevier, vol. 46, pp. 47-64, 2004.
- [10] F. Dong, D. Jin, X. Zhou, and J. Han, Adaptive robust constraint following control for omnidirectional mobile robot: An indirect approach, IEEE Access, vol. 9, pp. 8877=8889, 2021.
- [11] J. Liu, J. Zhu, R.L. Williams and J. Wu, Omnidirectional mobile robot controller based on trajectory linearization, Robotics and Autonomous Systems, Elsevier, vol. 56, pp. 461-479, 2005.
- [12] V.T. Dinh, H. Nguyen, S.M. Shin, M.K, Kim, S.B. Kim and G.S. Bynn, Tracking control of omnidirectional mobile platform with disturbance using diffeential sliding-mode controller, Journal of Precision Engineering Springer, vol, 19, no,5, pp. 39-48, 2012.
- [13] N. Hacen and B. Merdal, Motion analysis and control of omnidirectional mobile robot, Journal of Control, Automation and Electrical Systems, Springer, vol. 30, pp. 194-213, 2019.
- [14] D.J. Balkom, P.A. Kavathekar and M.T. Mason, Time-optimal trajectory for an omnidirectional vehicle, International Journal of Robotics Research, Sage Publications, vol. 25, no. 10, pp. 985-999, 2006.
- [15] C.A. Huang, H.M. Wu and W.H. Hung, Software/Hardware-based hierarchical finitetime sliding-mode control with input-saturation for an omnidirectional autonomous mobile robot, IEEE Access, vol. 7, pp. 90254-90267,2019.
- [16] C. Ren, Y. Ding, S. Ma, L.Hu and X. Zhu, Passivitybased tracking control of an omnidirectional mobile robot using one geometrical parameter, Control Engineering Practice, Elsevier, vol. 90, pp. 160-168, 2019.
- [17] H.M. Wu and M. Karkouh, Frictional forces and torque compensation-based cascading slidingmode tracking control for an uncertain omnidirectional mobile robot, Measurement and Control, Sage Publications, vol. 55, no. 3, pp. 178-188, 2022.
- [18] C. Ren, H. Jiang, C. Ma and S. Ma, Conditional disturbance rejection-based control for an omnidirectional mobile robot: An energy perspective, IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11641-11647, 2022.
- [19] C. Ren and S. Ma, Dynamic modelling and analysis of an omnidirectional mobile robot, IEEE IROS 2013, Intl. Conf. on Intelligent Robots and Systems, Tokyo, Japan, Nov. 2013.
- [20] H. Vellasco-Villa, H. Rodriguez-Castro, J. Estrada-Sanchez, H. Sira-Ramirez and I.A. Vasquez, Dynamic trajectory tracking control of an omnidirectional mobile robot based on a passive approach, Advances in Robot Manipulators, InTech Publications, 2010.
- [21] K. Watanabe, Y. Shiraishi, S. Tzafestas, J, Tung and T. Fukuda, Feedback control of an omnidirectional autonomous platform for mobile service robots, Journal of Intelligent and Robotic Systems, Springer, vol. 22, pp. 315-330, 1998.
- [22] M. Diehl, H.G. Bock, M. Diedem and P.B. Wieber, Fast direct multiple shooting algorithms for optimal robot control, In: Fast motion in biomechanics and robotics, Lecture Notes in Control and Information Sciences, LNCIS vol. 40, pp. 65-93, 2006.
- [23] J.T. Huang, T.V. Hung and M.L. Tseng, Smooth switching robust adaptive control for omnidirectional mobile robots, IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1986-1993, 2015.
- [24] A.S. Lafmajani, H. Farivamejad and S. Berman, 𝐻∞ optimal tracking controller for threewheeled omnidirectional mobile robots with uncertain dynamics, IEEE IROS 2020, IEEE Intl. Conf. on Intelligent Robots and Systems, Las Vegas, USA, Oct. 2020.
- [25] J. Lafay, C. Collette and P.B. Wieber, Model predictive control for tilt recovery of an omnidirectional wheeled humanoid robot, IEEE ICRA 2015, IEEE 2015 Intl Conf. on Robotics and Automation, Seattle, USA, May 2015.
- [26] C. Ren and S.Ma, Generalized proportional integral observer-based control of an omnidirectional mobile robot, Mechatronics, Elsevier, vol. 26, pp. 36-44, 2015.
- [27] M. Sira-Ramirez, C. Lopez-Uriba and M. Velasco-Villa, Linear observer-based active disturbance rejection control of the omnidirectional mobile robot, Asian Journal of Control, J. Wiley, vol. 15, no. 1, pp. 51-63, 2013.
- [28] S. Lee and D. Chwa, Dynamic image-based visual servoing on monocular camera mounted omnidirectional mobile robots considering actuators and target motion via fuzzy integral sliding-mode control, IEEE Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 2063-2076, 2022.
- [29] G. Makonnen, S. Kumar and P.M. Pathak, Wireless hybrid visual servoing of omnidirectional wheeled mobile robots, Robotics and Autonomous Systems, Elsevier, vol. 75, pp. 450-462, 2020.
- [30] G. Rigatos and K. Busawon, Robotic manipulators and vehicles: Control, estimation and ϔiltering, Springer, 2018
- [31] G. Rigatos and E. Karapanou, Advances in applied nonlinear optimal control, Cambridge Scholars Publishers, 2020
- [32] G.G. Rigatos and S.G. Tzafestas, Extended Kalman Filtering for Fuzzy Modelling and MultiSensor Fusion, Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis vol. 13, pp. 251-266, 2007.
- [33] M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory and Applications, Prentice-Hall, 1993.
- [34] G. Rigatos and Q. Zhang, Fuzzy model validation using the local statistical approach, Fuzzy Sets and Systems, Elsevier, vol. 60, no. 7, pp. 882-904,2009.
- [35] G. Rigatos, M. Abbaszadeh and M.A. Hamida, Intelligent control for electric power systems and electric vehicles, Taylor and Francis / CRC Publications, 2024.
- [36] G. Rigatos, Nonlinear control and filtering using differential flatnesss theory approaches: Applications to electromechanical systems, Springer, 2016
- [37] G.J. Toussaint, T. Basar and F. Bullo, 𝐻∞ optimal tracking control techniques for nonlinear underactuated systems, in Proc. IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney Australia, 2000.
- [38] G. Rigatos, M. Abbaszadeh, P. Siano, Control and estimation of dynamical nonlinear and partial differential equation systems: Theory and Applications, IET Publications, 2022
- [39] G. Rigatos, M. Abbaszadeh and J. Pomares, Flatness-based control in successive loops for electropneumatic actuators and robots, IFAC Journal of Systems and Control, Elsevier, vol. 25, pp. 10222, 2023.
- [40] G. Rigatos, P. Wira, M. Abbaszadeh and J. Pomares, Flatness-based control in successive loops for industrial and mobile robots, IEEE IECON 2022, IEEE 2022 Intl. Conf. on Industrial Electronics, Brussels, Belgium, Oct. 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91363866-b54a-443a-b9f1-e2b037e02340
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.