Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ wody w procesie wytwarzania folii celulozowej z roztworów cieczy jonowej
Języki publikacji
Abstrakty
This study addresses in detail the role of water in the consecutive steps of film forming: cellulose dissolution, regeneration and drying, and its impact on the mechanical properties of the cellulose film. Prehydrolysis kraft (PHK) pulp was subjected to hydrothermal treatment (HT) prior to its dissolution in 1-ethyl-3-methylimidazolium acetate [emim]OAc. After the treatment, the DP of the pulp was 440 and the polydispersity index was as low as 3.1. HT pretreated pulp was dissolved in [emim]OAc with a water content of 2, 7, 14 and 21 wt%. The pulp dissolution was completed within 15 min regardless of the water content in the solvent. The rheological behavior, one of the key properties in film formation, was determined at varied temperature and cellulose concentration. Cellulose films were prepared from solutions with cellulose concentrations of 8, 12 and 16 wt% at a temperature of 90 °C. The impact of water on the macromolecular, morphological and mechanical properties of the transparent films prepared was thoroughly studied. With a very low polydispersity of the cellulose chain, the films prepared revealed high strength ranging from 87 to 106.5 MPa at elongation from 10 to 50% in conditioned state.
W artykule przedstawiono wpływ wody w poszczególnych etapach procesu formowania folii celulozowej z roztworów cieczy jonowej. Omówiono proces rozpuszczania celulozy, wpływ zestalania i suszenia na właściwości mechaniczne folii celulozowej. Do badań zastosowano masę celulozową drzewną PHK po obróbce hydrotermicznej (HT) o stopniu polimeryzacji DP 440, niskiej polidyspersji PDI 3,1 i o zróżnicowanej zawartości wody w celulozie 2, 7, 14 i 21%. Zbadano rozpuszczalność celulozy HT w cieczy jonowej oraz właściwości reologiczne roztworów. Celuloza HT ulega rozpuszczeniu w cieczy jonowej w czasie 15 minut niezależnie od zawartości wody. Opisano sposób formowania folii z roztworów o stężeniu celulozy 8, 12 i 16% w temperaturze 90 oC. Wykazano wpływ wody w roztworach przędzalniczych na właściwości roztworów, a następnie na właściwości mechaniczne folii. Oznaczono właściwości cząsteczkowe i morfologię transparentnych folii celulozowych. Folie celulozowe charakteryzowały się niskimi wartościami polidyspersji, wytrzymałością w zakresie 87–106,5 MPa i wydłużeniem 10-50% w stanie aklimatyzowanym.
Czasopismo
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Institute of Biopolymers and Chemical Fibres, Łódź, Poland
autor
- Institute of Biopolymers and Chemical Fibres, Łódź, Poland
autor
- Institute of Biopolymers and Chemical Fibres, Łódź, Poland
autor
- Department of Forest Products Technology, Aalto University, Aalto, Finland
autor
- Department of Forest Products Technology, Aalto University, Aalto, Finland
autor
- Department of Forest Products Technology, Aalto University, Aalto, Finland
Bibliografia
- 1. Wawro D, Hummel M, Michud A, Sixta H. Strong Cellulosic Film Cast from Ionic Liquid Solutions. Fibres & Textiles in Eastern Europe 2014; 22, 3(105): 26-33.
- 2. Wendler F, Meister F, Wawro D, Wesolowska E, Ciechańska D, Saake B, Puls J, Le Moigne N, Navard P. Polysaccharide Blend Fibres Formed from NaOH, NMethylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibres & Textiles in Eastern Europe 2010; 18, 2: 21-30.
- 3. Kuzmina O, Sashina E, Troshenkowa S, Wawro D. Dissolved State of Cellulose in Ionic Liquids - the Impact of Water. Fibres & Textiles in Eastern Europe 2010; 18, 3: 32-37.
- 4. Gericke M, Fardim P, Heinze T. Ionic Liquids - Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose. Molecules 2012; 17: 7458-7502.
- 5. Pat. EP 2 268 857, 2011. Cellulosic mouldings.
- 6. Pat. EP 1 980 653, 2008. Method for forming solutions of cellulose in ionic liquids and forming fibres from the solution.
- 7. US 2013/0192489, 2013. Process for producing cellulose film.
- 8. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002; 124: 4974–4975.
- 9. Zhao D, Li He, Zhang J, Fu L, Liu M, Fu J, Ren P. Dissolution of cellulose in phosphate-based ionic liquids. Carbohydrate Polymers 2012; 87: 1490– 1494.
- 10. Liu Z, Wang H, Li Z, Lu X, Zhang X, Zhang S, Zhou K. Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Materials Chemistry and Physics 2011; 128: 220–227.
- 11. Bentivoglio G, Roeder T, Fasching M, Buchberger M, Schottenberger H, Sixta H. Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 2006; 86: 154-161.
- 12. Wendler F, Todi L-N, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 2012; 528: 76-84.
- 13. Michud A, Hummel M, Haward S, Sixta H. Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology. Carbohydrate Polymers 2015; 117(6): 355-363.
- 14. Kalyani Kathirgamanathan. Modifications of Cellulose Using Ionic liquids. Ph.D. thesis, University of Auckland, Auckland, New Zealand, 2010.
- 15. Seddon KR, Stark A, Torres MJ. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure & Applied Chemistry 2000; 72: 2275-2287.
- 16. Le KA, Sescousse R, Budtova T. Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 2012; 19: 45–54.
- 17. Olsson C, Idstrom A, Nordstierna L, Westman G. Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers 2014; 99: 438– 446.
- 18. Wawro D. Investigations in alkaline cellulose solutions. Ph.D. thesis, Dissertation, 1998.
- 19. Struszczyk H, Wawro D, Urbanowski A, Mikołajczyk W, Starostka P. US patent 6,106,763, 2000.
- 20. Struszczyk H, Wawro D, Urbanowski A, Mikołajczyk W, Starostka P. European patent EP 1317573, 2000.
- 21. Wawro D, Stęplewski W, Bodek A. Manufacture of Cellulose Fibres from Alkaline Solutions of Hydrothermally Treated Cellulose Pulp. Fibres & Textiles in Eastern Europe 2009; 17, 3: 18-22.
- 22. Wawro D, Struszczyk H. Biodegradable films made on the basis of biotransformed cellulose/starch blends. Fibres & Textiles in Eastern Europe 1999; 7, 2: 49-51.
- 23. Steller R. Novel models of viscous liquids based on carreau equation. Polimery 2013; 58, 11-12: 913-919.
- 24. Carreau PJ, DeKee DCR, Chhabra RP. Rheology of Polymeric Systems. Ed. Hanser, New York, 1997.
- 25. Ekmanis JL. GPC analysis of cellulose. Am. Lab. News 1987; Jan/Feb: 10.
- 26. Timpa JD. J. Agric. Food Chem. 1991; 39: 270–275.
- 27. Dawsey TR, McCormick CL. J. Macromol. Sci. – Rev. Macromol. Chem. Phys. 1990; C30, 364: 405–440.
- 28. Adamczyk G, Sikora M, Krystyjan M. Methods to measure the thixotropic properties of food products. Food, Science, Technology, Quality 2012; 3(82): 19–34.
- 29. Bird RB, Marsh BD. Viscoelastic Hysteresis. Part I. Model Predictions. J. Rheol. 1968; 12: 479.
- 30. Fei Lu, Jun Song, Bo-Wen Cheng, Xiu-Jie Ji, Le-Jun Wang. Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3- methylimidazolium acetate solutions. Cellulose 2013; 20: 1343–1352.
- 31. Šuty S, Petrilakova K, Katuscak S, KirschnerovaI S, Jablonsky M, VizarovaIK, Vrska M. Change in the capability of cellulose fibres to retain water during thermally accelerated ageing of paper. Cellulose Chem. Technol. 2012; 46(9-10): 631-635.
- 32. Proniewicz L, Pałuszkiewicz C, Wesełucha-Birczyńska A, Majcherczyk H, Barański A, Konieczna A. FT-IR and Raman study of hydrothermally degradated cellulose. Journal of Molecular Structure 2001; 596: 163-169.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-912c29fd-c93d-4b60-a82f-89d15f640266