PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the impact of climate change and the hydrological response within the Gurara reservoir catchment, Nigeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 2150 km2 transboundary Gurara Reservoir Catchment in Nigeria was modelled using the Water Evaluation and Planning tool to assess the hydro-climatic variability resulting from climate change and human-induced activities from 1989 to 2019 and projected to the future till 2050. Specifically, the model simulated the historic data set and predicted the future runoff. The initial results revealed that monthly calibration/validation of the model yielded acceptable results with Nash–Sutcliff efficiency (NSE), percent bias (PBIAS), and coefficient of determination (R2) values of 0.72/0.69, 0.72/0.67 and 4.0%/1.0% respectively. Uncertainty was moderately adequate as the model enveloped about 70% of the observed runoff. Future predicted runoffs were modelled for climate ensembles under three different representative concentration pathways (RCP4.5, RCP6.5 and RCP8.5). The RCP projections for all the climate change scenarios showed increasing runoff trends. The model proved efficient in determining the hydrological response of the catchment to potential impacts from climate change and human-induced activities. The model has the potential to be used for further analysis to aid effective water resources planning and management at catchment scale.
Wydawca
Rocznik
Tom
Strony
129--143
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • National Water Resources Institute, Mando, P.MB 2309, Kaduna, Nigeria
  • National Water Resources Institute, Mando, P.MB 2309, Kaduna, Nigeria
  • National Water Resources Institute, Mando, P.MB 2309, Kaduna, Nigeria
  • National Water Resources Institute, Mando, P.MB 2309, Kaduna, Nigeria
Bibliografia
  • ABDULLAHI S.A., MUHAMMAD M., ADEOGUN B.K., MOHAMMED I. 2014. Assessment of water availability in the Sokoto Rima River Basin. Resources and Environment. Vol. 4 p. 220–233. DOI 10.5923/j.re.20140405.03.
  • AGO N.D., OLOWOSEGUN T., BALOGUN J.K., AUTA J., ABIODUN J.A. 2016. Baseline survey of the socio-economics of fishers in communities around Gurara reservoir, Kaduna State, Nigeria. Nigerian Journal of Fisheries and Aquaculture. Vol. 4(2) p. 25–29.
  • AGUNBIADE O.A., JIMOH O.D. 2013. Flood modelling of upper Gurara watershed using remote sensing data and the geospatial stream-flow model. Conference: River Basin Management. WIT Transactions on Ecology and The Environment. Vol. 172 p. 39–49. DOI 10.2495/RBM130041.
  • AMUTHA R., PORCHELVAN P. 2009. Estimation of surface runoff In Malattar sub-watershed using SCS-CN method. Journal of the Indian Society of Remote Sensing. Vol. 37(2) p. 291–304. DOI 10.1007/s12524-009-0017-7.
  • AWOTWI A., ANORNU G.K., QUAYE-BALLARD J.A., ANNOR T. 2018. Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degradation and Development. Vol. 29(10) p. 3331–3343. DOI 10.1002/ldr.3093.
  • AWOTWI A., ANORNU G.K., QUAYE-BALLARD J.A., ANNOR T., FORKUO E.K. 2017. Analysis of climate and anthropogenic impacts on runoff In the Lower Pra River Basin of Ghana, Heliyon. Vol. 3, e00477. DOI 10.1016/j.heliyon.2017.e00477.
  • AWOTWI A., KUMI M., JANSSON P.E., YEBOAH F., NTI I.K. 2015. Predicting hydrological response to climate change in the White Volta Catchment, West Africa. Journal of Earth Science and Climate Change. Vol. 6, 249. DOI 10.4172/2157-7617.1000249.
  • AWOTWI A., YEBOAH F., KUMI M. 2015. Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal. Vol. 29(2) p. 259–267. DOI 10.1111/wej.12100.
  • BATES B.C., KUNDZEWICZ Z.W., WU S., PALUTIKOF J.P. (eds.) 2008. Climate change and water technical paper of the intergovernmental panel on climate change VI. Geneva. IPCC Secretariat. ISBN 978-92-9169-123-4 pp. 210.
  • CRIBBIE R.A., FIKSENBAUM L., KESELMAN H.J., WILCOX R.R. 2011. Effect of non-normality on test statistics for one-way independent groups designs. British Journal of Mathematics and Statistics Psychology. DOI 10.1111/j.2044-8317.2011.02014.x.
  • DALIL M., MAIRABO A.P., HUSAINI A., BABANGIDA U.M., ABUBAKAR A. 2015. Impact of Gurara Dam on land cover in the surrounding communities of Kaduna State, Nigeria. Journal of Environment and Earth Science. Vol. 5 p. 27–37.
  • DESSU S.B., MELESSE A.M., BHAT M.G., MCCLAIN M.E. 2013. Assessment of water resources availability and demand in the Mara River Basin. Catena. Vol. 115 p. 104–114. DOI 10.1016/j.cate-na.2013.11.017.
  • DOMFEH M.K., ANYEMEDU F.O.K., ANORNU G.K., ADJEI K.A., ODAI S.N. 2015. Assessment of the water balance of the Barekese reservoir in Kumasi, Ghana. Journal of Science and Technology. Vol. 35. No. 3 p. 34–51.
  • EDUVIE O.M., OSEKE F.I. 2021. Cumulative impacts of climate change variability around the Goronyo Dam in the Iullemmeden basin, northwest Nigeria. In: Climate change and water resources In Africa. Eds. S. Diop, P. Scheren, A. Niang. Springer International Publishing. p. 171–192. DOI 10.1007/978-3-030-61225-2_8.
  • FMWR 2013. Gurara water transfer to FCT Lot-B: Water conveyance pipeline and Azara-Jere irrigation scheme: Abuja.
  • FOWLER H.J., KILSBY C.G. 2007. Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change. Vol. 80(3–4) p. 337–367. DOI 10.1007/s10584-006-9117-3.
  • GAMACHU D. 1977. Aspects of climate and water budget in Ethiopia. Addis Ababa. Addis Ababa University Press pp. 39.
  • HAMEED K.H., RAO A.R. 2008. A modified Mann–Kendall trend test for auto-correlated data. Journal of Hydrology. Vol. 204(1–4) p. 182–196.
  • HENGEVELD H. 1995. Understanding atmospheric change: A survey of the background science and implications of climate change and ozone depletion. 2 nd ed. Environment Canada, State of the Environment Reporting. SOE Report No. 95. Ottawa. Environment Canada. ISBN 0-662-18687-7 pp. 68.
  • HIPEL K.W., MCLEOD A.I. 2005. Time series modeling of water resources and environmental systems. Development in Water Science. Vol. 45 pp. 1012.
  • HJELMFELT A.T., WOODWARD D.A., CONAWAY G., QUAN Q.D., VAN MULLEM J.A., HAWKINS R.H. 2001. Curve numbers recent development. IAHR, 29th IAHR Congress Proceedings, Beijing, China p. 285–291.
  • HUO Z., FENG S., KANG S., LI W., CHEN S. 2008. Effect of climate chan ges and water-related human activities on annual stream flows of the Shiyang River basin in arid north-west China. Hydrological Processes: An International Journal. Vol. 22(16) p. 3155–3167.
  • IBRAHIM H.M., ISIGUZO E.A. 2009. Flood frequency analysis of Gurara River catchment at Jere, Kaduna state, Nigeria. Scientific Research and Essay. Vol. 4(6) p. 636–646.
  • IPCC 2013. Intergovernmental Panel on Climate Change. The physical science basis. Working Group 1 (WG1) Contribution on cli mate change summit: 5 th Assessment. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom, New York, NY, USA. Cambridge University Press. ISBN 978-1-107-66182-0 pp. 1535.
  • JIN L., WHITEHEAD P.G., ADDO K.A., AMISIGO B., MACADAM I., JANES T., CROSSMAN J., NICHOLLS R. J., MCCARTNEY M., RODDA H.J. 2018. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes. Science of the Total Environment. Vol. 637–638 p. 1069–1080. DOI 10.1016/j.scitotenv.2018.04.350.
  • KATASHAYA G.G. 1986. Hydro-meteorological data collection for water resources planning: A case study. In: Proceedings of International Conference on Water Resources Needs and Planning in Drought-Prone Areas. P. 2 p. 741–758.
  • KUNDZEWICZ Z.W. 2004. Searching for change in hydrologic data. Hydrologic Sciences Journal. Vol. 49(1) p. 3–6.
  • LEHMANN D., BRINKMANN K., DIOGO R.V., BUERKERT A. 2017. Temporal and spatial changes of land use in rare metal mining areas of Rwanda. International Journal of Mining, Reclamation and Environment. Vol. 31(8) p. 519–529.
  • LÉVITE H., SALLY H., COUR J. 2003. Testing water demand management scenarios in a water-stressed basin in South Africa Application of the WEAP model. Physics and Chemistry of the Earth. Parts A/B/C. Vol. 28 p. 779–786.
  • LINGCHENG L., LIPING Z., JUN X., CHRISTOPHER J.G., RENCHAO W., SIDONG Z. 2015. Implications of modelled climate and land cover changes on runoff in the middle route of the south to north water transfer project in China. Water Resources Management. Vol. 29(8) p. 2563–2579. DOI 10.1007/s11269-015-0957-3.
  • MORÁN-TEJEDA E., ZABALZA , J., RAHMAN K., GAGO-SILVA A., LÓPEZ-MORENO J. I., VICENTE-SERRANO S., BENISTON M. 2015. Hydrological impacts of climate and land-use changes in a mountains watershed: uncertainty estimation based on model comparison. Ecohydrology. Vol. 8(8) p. 1396–1416. DOI 10.13031/2013.23153.
  • MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R.L., HARMEL R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885–900.
  • NCAR 2013. Climate data guide. Analysis tools and methods: Taylor diagrams [online]. Boulder. National Center for Atmospheric Research. [Access 19.04.2020]. Available at: https://climatedata-guide.ucar.edu/climate-data-tools-and-analysis/taylor-diagrams
  • OKAFOR G.C., OGBU K.N. 2018. Assessment of the impact of cli mate change on the freshwater availability of Kaduna River basin, Nigeria. Journal of Water and Land Development. No. 38 p. 105–114. DOI 10.2478/jwld-2018-0047.
  • OSEKE I.F., ANORNU G.K., ADJEI K.I., EDUVIE O.M. 2020. Development of water surface area-storage capacity relationship using empirical model for Gurara reservoir, Nigeria. Modeling Earth Systems and Environment. Vol. 7. p. 2047–2058. DOI 10.1007/s40808-020-00949-w.
  • PEKEL J.F., COTTAM A., GORELICK N., BELWARD A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature. Vol. 540 p. 418–422. DOI 10.1038/nature20584.
  • PONCE V.M., HAWKINS R.H. 1996. Runoff curve number: Has it reached maturity? Journal of Hydrological Engineering. Vol. 1(1) p. 11–19. DOI 10.1061/(ASCE)1084-0699(1996)1:1(11)
  • ROGERS P. 2010. Coping with global warming and climate change. Journal of Water Resources Planning and Management. Vol. 134 p. 203–204.
  • SALVATI L., DE ZULIANI E., SABBI A., CANCELLIERI L., TUFANO M., CANEVA G., SAVO V. 2017. Land-cover changes and sustainable development in a rural cultural landscape of central Italy: classical trends and counter-intuitive results. International Journal of Sustainable Development and World Ecology. Vol. 24(1) p. 27–36.
  • SHADEED S., ALMASRI M. 2010. Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Science and Engineering. Vol. 3(1) p. 1–13.
  • SHAPIRO S.S., WILK M.B., CHEN H.J. 1968. A comparative study of various tests for normality. Journal of the American Statistical Association. Vol. 63. No. 324 p. 1343–1372. DOI 10.2307/2285889.
  • SYVITSKI J.P., VÖRÖSMARTY A.J., KETTNER P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science Journal. Vol. 308(5720) p. 376–380.
  • TALL M., SYLLA M.B., DIALLO I., PAL J.S., FAYE A., MBAYE M. L., GAYE A.T. 2017. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theoretical and Applied Climatology. Vol. 129(1–2) p. 655–665.
  • TAYLOR K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysics Resources. Atmospheres. Vol. 106 p. 7183–7192. DOI 10.1029/2000JD900719.
  • TEMPLETON G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for is research. Communications of the Association for Information Systems. Vol. 28. DOI 10.17705/1CAIS.02804.
  • TURGAY P., ERCAN K. 2006. Trend analysis in Turkish precipitation data. Hydrological Processes Journal. Vol. 20 p. 2011–2026.
  • UFOEGBUNE G.C., YUSUF H.O., ERUOLA A.O., AWOMESO J.A. 2011. Estimation of water balance of Oyan Lake in the North West Region of Abeokuta, Nigeria. British Journal of Environment and Climate Change. Vol. 1(1) p. 13–27. DOI 10.9734/BJECC/2011/203.
  • USDA 1972. National engineering handbook. Section 4. Hydrology. Chapters 4–10. Washington, D.C. US Department of Agriculture. Soil Conservation Service.
  • VAN LIEW M.W., ARNOLD J.G., GARBRECHT J.D. 2003. Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE. Vol. 46(6) p. 1539–1551. DOI 10.13031/2013.15643.
  • WANG D., HEJAZI M. 2011. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow. United States Water Resources Research. Vol. 47(10) p. 1–16.
  • XU Z.X., TAKEUCHI K., ISHIDAIRA H. 2003. Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology. Vol. 279 (1–4) p. 144–150.
  • YANG Y., TIAN F. 2009. Abrupt change of runoff and its major driving factors in Haihe River Catchment China. Journal of Hydrology. Vol. 374(3–4) p. 373–383. DOI 10.1016/j.jhydrol.2009.06.040.
  • YATES D., MILLER K.A. 2013. Integrated decision support for energy/water planning in California and the Southwest. International Journal of Climate Change: Impacts and Responses. Vol. 4(1) p. 49–64.
  • YATES D., SIEBER J., PURKEY D., HUBER-LEE A. 2005. WEAP21 – A demand-, priority-, and preference-driven water planning model. P. 1: Model characteristics. Water International. Vol. 30 (4) p. 487–500. DOI 10.1080/02508060508691893.
  • YEUNG C.W. 2005. Rainfall-runoff and water-balance models for management of the Fena Valley Reservoir, Guam. Scientific Investigations Report 2004-5287. U.S. Geological Survey pp. 53. DOI 10.3133/sir20045287.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91270cdc-23a6-4a69-8407-e5a1aa7b7d18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.