PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precise time‑depth conversion of coal measure strata based on velocity splicing: a case application in Qinshui basin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transforming seismic data from the time domain to the depth domain is a very important step when using 3D seismic exploration to guide the exploration and development of coalbed methane (CBM). However, the conventional time-depth conversion method has difficulty meeting the control accuracy requirements of CBM development based on horizontal well technology when the 3D seismic data in a mining area are old. Therefore, a precise time-depth conversion method was found to improving the accuracy of time-depth conversion, which is based on the splicing of seismic inversion velocity and poststack migration velocity. The first step of this method is obtaining the standard layers in the time domain by precise interpretation of seismic data. Then, the inversion velocity and poststack migration velocity are spliced to obtain the complete interval velocity volume of the study area, and the results are corrected. The next step is the prediction of the coal seam floor elevation based on the spliced velocity, and the predicted coal seam floor elevation is corrected by borehole data. Finally, the mesh is between standard layers in the depth domain to obtain the 3D data volume in the depth domain. The method was applied to the time-depth conversion of 3D seismic data in the Yangquan X study area. The results show that the relative error between the predicted results and the borehole data of No. 3, No. 8 and No. 15 coal seam is only 0.72% through the validation of the reserved boreholes, indicating that the method is effective. This study provides a precise method of time-depth conversion for seismic data when there is only poststack seismic data in the mining area, which can not only improve the interpretation accuracy of standard layers but can also improve the prediction accuracy of other layers between standard layers, which can better guide the well location arrangement of coalfield and CBM.
Czasopismo
Rocznik
Strony
1729--1746
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, China
  • School of Energy Resources, China University of Geosciences, Beijing, China
  • Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, China
autor
  • Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, China
autor
  • Research and Application Center of Gas Geology Yangquan Xinyu Geotechnical Engineering Co., Ltd, Huayang New Material Technology Group Co., Ltd, Yangquan, China
  • School of Resources and Environment, Henan Polytechnic University, Jiaozuo, China
autor
  • Research and Application Center of Gas Geology Yangquan Xinyu Geotechnical Engineering Co., Ltd, Huayang New Material Technology Group Co., Ltd, Yangquan, China
  • Technology Center, Huayang New Material Technology Group Co., Ltd, Yangquan, China
autor
  • Beijing Institute of Multicomponent Seismic Technology, Beijing, China
autor
  • Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, China
autor
  • Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, China
Bibliografia
  • 1. Bai ZH (2019) Time-depth conversion method of mapping sampling seismic data volume based on geological model and its application. J Yangtze Univ Nat Sci Edit 16(10):23–28
  • 2. Cameron M, Fomel S, Sethian J (2008) Time-to-depth conversion and seismic velocity estimation using time-migration velocity. Geophys J Soc Explor Geophys 73(5):VE205–VE210
  • 3. Dave M, Bush MD, Sik JD (1995) Analytic velocity functions. Lead Edge 14(7):775–782. https://doi.org/10.1190/1.1437161
  • 4. Dong M (2009) Coal-bearing strata characteristics and sedimentary environment in shuonan mining area Shanxi. Coal Geol China 21(a02):21–23
  • 5. Francesco EM, D’Ambrogi C (2017) Vel-IO 3D: a tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow. Comput Geosci 99:171–182. https://doi.org/10.1016/j.cageo.2016.11.013
  • 6. Han B, Ren RJ, Li X, Gang MC (2013) Application of 3D prestack time migration velocity field in variable velocity mapping. J Oil Gas Technol 35(7):70–73. https://doi.org/10.3969/j.issn.1000-9752.2013.07.015
  • 7. Hu QJ, Li MX, Jia HM, Liu CC, Cui XR, Li LY, Peng H, Zhang GB, Mao CH (2019) Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui basin. J China Coal Soc 44(4):1178–1187
  • 8. Huang HD, Luo Q, Fu Y, Wang BH (2007) Study and application of seismic phase-controlled non-linear random inversion. Oil Geophys Prospect 42(6):694–698. https://doi.org/10.3321/j.issn:1000-7210.2007.06.015
  • 9. Ian FJ, Keith I, Martin G, Pierre P (2012) 3-D prestack depth migration and velocity model building. Lead Edge 17(7):897–906. https://doi.org/10.1190/1.1438063
  • 10. Jia JC (2007) Coal depositional system and its controlling role of coalbed methane in late paleozonic of Qinshui basin. J Earth Sci Environ 29(4):374–382. https://doi.org/10.3969/j.issn.1672-6561.2007.04.007
  • 11. Kang HP, Wang GF, Jiang PF, Wang JC, Zhang N, Jing HW, Huang BX, Yang BG, Guan XM, Wang ZG (2018) Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000 m. J China Coal Soc 43(07):1789–1800
  • 12. Keho T, Samsu D (2012) Depth conversion of Tangguh gas fields. Lead Edge 21(10):966–971. https://doi.org/10.1190/1.1518432
  • 13. Li SD, Liu W (2007) Application of seismic velocity spectrum in data Interpretation. Zhongzhou Coal 04:24–25. https://doi.org/10.3969/j.issn.1003-0506.2007.04.015
  • 14. Li WZ, Wang PJ, Zhang GC, Lu BL (2011) Researches on time-depth conversion of deep-seated basal strata of Pearl River mouth basin. Chin J Geophys Chin Edit 54(2):449–456. https://doi.org/10.3969/j.issn.0001-5733.2011.02.023
  • 15. Li M, Tang LJ, Yang Y, Zhen SJ (2015) Controlling of differentia deformation on hydrocarbon accumulation of primary piedmonts in the Tarim basin. Geol Explor 51(4):776–788
  • 16. Liu DM, Cai YD, Yao YB (2011) Geological controls on prediction of coalbed methane of no. 3 coal seam in southern Qinshui basin, north China. Int J Coal Geol 88(2/3):101–112
  • 17. Liu SF, Wen RX, Chen CX, Wang GL, Zhang DJ, Liang Q (2012) Methodology of variable velocity mapping using vertical multi-parameters fitting controlled by horizons—a case study of Mingshui-Suihua. Prog Geophys 27(4):1572–1580. https://doi.org/10.6038/j.issn.1004-2903.2012.04.034
  • 18. Shao LY, Xiao ZH, Wang H, Lu J, Zhou J (2008) Permo-carbon-iferous coal measures in the Qinshui basin: high-resolution sequence stratigraphy and coal accumulating models. Chin J Geol 43(4):777–791
  • 19. Shao LY, Dong DX, Li MP, Wang HS, Wang DD, Lu J, Zheng MQ, Cheng AG (2014) Sequence-paleogeography and coal accumulation of the carboniferous-permian in the north China basin. J China Coal Soc 39(8):1725–1734
  • 20. Wang D, Yuan SY, Yuan H, Zeng HH, Wang SX (2021) Intelligent velocity picking based on unsupervised clustering with the adaptive threshold constraint. Chin J Geophys 64(3):1048–1060. https://doi.org/10.6038/cjg2021O0305
  • 21. Wang XW, Gao Y, Chen C et al (2022) Intelligent velocity picking and uncertainty analysis based on the Gaussian mixture model. Acta Geophys 2022:70. https://doi.org/10.1007/s11600-022-00859-8
  • 22. Xu CE, Ye JX, Zhou JY (2008) Four-dimensional velocity modeling and its application on the basis of PreSTM. Offshore Oil 28(2):25–28. https://doi.org/10.3969/j.issn.1008-2336.2008.02.004
  • 23. Yuan JJ (2006) Application of layer-cake method to make structure map and geological base. Geophys Prospect Petrol 45(3):285–289. https://doi.org/10.3969/j.issn.1000-1441.2006.03.014
  • 24. Yuan L (2017) Scientific conception of precision coal mining. J China Coal Soc 42(1):1–7
  • 25. Yuan SY, Jiao XQ, Luo YN, Sang WJ, Wang SX (2022) Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery. Geophysics 87(2):R165–R181
  • 26. Zhang ZW, Wang CS, Lin YP, Zhou TW, Huang HD, Zhao D (2011) Applications of facies-controlled nonlinear random inversion for carbonate reservoir prediction in block A of Amu-darya basin. Oil Geophys Prospect 46(2):304–310
  • 27. Zhang ZM, Cao DP, Yin XY, Liu BQ, Sun CL (2016) Research and application status of well seismic joint velocity modeling in time-depth conversion. Prog Geophys 31(5):2276–2284
  • 28. Zhang JY, Liu DM, Gai YD, Pan ZJ, Yao YB, Wang YJ (2017a) Geological and hydrological controls on the accumulation of coalbed methane within the no. 3 coal seam of the southern Qinshui basin. Int J Coal Geol 182:94–111
  • 29. Zhang S, Huang HD, Dong YP, Yang X, Wang C, Luo YN (2017b) Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir. J Nat Gas Sci Eng 45:417–427. https://doi.org/10.1016/j.jngse.2017.04.028
  • 30. Zhang S, Huang HD, Li HJ, Wang GF, Dong YP, Luo YN (2017c) Prestack seismic facies-controlled joint inversion of reservoir elastic and petrophysical parameters for sweet spot prediction. Energy Explor Exploit 35(6):767–791. https://doi.org/10.1177/0144598717716286
  • 31. Zhang S, Huang HD, Zhu BH, Li HJ, Zhang LH (2017d) Seismic facies-controlled prestack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction. Explor Geophys 49(5):655–668. https://doi.org/10.1071/EG17048
  • 32. Zhang L, Li H, Zhi L, Gai YH, Wang R (2018a) Study and application of velocity modeling under the constraint of full geological structure framework. Prog Geophys 33(4):1637–1644. https://doi.org/10.6038/pg2018BB0349
  • 33. Zhang S, Huang HD, Wang XX, Zhang JW, Li JK (2018b) Prediction of sand-conglomerate reservoirs via seismic facies controlled inversion in the lower Es-3 of the northern steep slope of the Chexi Sag. Earth Sci Front 25(2):210–220
  • 34. Zhao LY, Yi TS (2020) Analysis on well type structure and optimization of associated borehole technology of CBM horizontal wells. Coal Sci Technol 48(3):221–226
  • 35. Zhou D, Hu DK, He M, Lian SY (2008) The selection of fitting curve in time-depth transformation of deep-seated strata and crust. Earth Sci J China Univ Geosci 33(4):531–537. https://doi.org/10.3321/j.issn:1000-2383.2008.04.010
  • 36. Zhu WM (2019) Comparative analysis of the time-depth conversion methods in 3D seismic data interpretation. China Petrol Chem Stand Qual 39(22):170–171
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-912483a4-0e66-44b6-b0fe-467ee8596ca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.