Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present paper applies Sobol's variance-based global sensitivity analysis (SSA) to quantify the contribution of input imperfections to the load-carrying capacity (LCC) of an IPN 200 steel compressed member. LCC is evaluated using the geometrically and materially non-linear finite element solution with regard to the effects of initial random imperfections including residual stresses. Comparison of results of SSA for (i) buckling about the minor principal axis, (ii) buckling about the major principal axis and (iii) lateral–torsional buckling due to bending moment is performed on the non-dimensional slenderness interval of 0–2. SSA for (i) and (ii) is performed for steel grade (a) S235 and (b) S355, SSA for (iii) is performed only for steel grade S235. SSA found similarities in results (ia) and (ib), (iia) and (iib) and identified significant differences between results (ia) and (iiia), (iia) and (iiia), where sensitivity to the initial axial curvature is more than two times higher in (ia) than in (iiia). The relationships between the effects of initial imperfections on LCC and the design criteria of reliability of Eurocode 3 are discussed.
Czasopismo
Rocznik
Tom
Strony
1207--1218
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wykr.
Twórcy
autor
- Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, Veveri Street 95, 602 00 Brno, Czech Republic
autor
- Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, Veveri Street 95, 602 00 Brno, Czech Republic
Bibliografia
- [1] R.D. Ziemian, Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, New Jersey, 2010.
- [2] J. Szalai, F. Papp, On the probabilistic evaluation of the stability resistance of steel columns and beams, J. Construct. Steel Res. 65 (2009) 569–577.
- [3] V. Papadopoulos, G. Soimiris, M. Papadrakakis, Buckling analysis of I-section portal frames with stochastic imperfections, Eng. Struct. 47 (2013) 54–66.
- [4] D. Schillinger, Stochastic FEM Based Stability Analysis of ISections With Random Imperfections, (Diploma thesis), Stuttgart University, 2008.
- [5] S. Shayan, K. Rasmussen, H. Zhang, On the Modelling of Initial Geometric Imperfections and Residual Stress of Steel Frames, The University of Sydney, 2012.
- [6] G. Sedlacek, H. Stangenberg, Design philosophy of Eurocodes – background information, J. Construct. Steel Res. 54 (1) (2000) 173–190.
- [7] G. Sedlacek, Ch. Müller, The European standard family and its basis, J. Construct. Steel Res. 62 (11) (2006) 1047–1059.
- [8] ISO 2394:2015, General Pinciples on Reliability for Sructures. The Iternational Standard, International Organization for Standardization, Geneve, 1998.
- [9] EN 1990, Eurocode-Basic of Structural Design, CEN, Brussels, 2002.
- [10] S.K. Dugal, Limit State Design of Steel Structures, Tata McGraw-Hill Education India, India, 2014.
- [11] K. Lee, J.S. Davidson, J. Choi, Y. Kang, Ultimate strength of horizontally curved steel I-girders with equal end moments, Eng. Struct. 153 (2017) 17–31.
- [12] J. Chalmovský, J. Štefaňák, L. Miča, Z. Kala, Š. Skuodis, A. Norkus, D. Žilionienė, Statistical-numerical analysis for pullout tests of ground anchors, Baltic J. Road Bridge Eng. 12 (3) (2017) 145–153.
- [13] E.K. Zavadskas, Z. Turskis, S. Kildienė, State of art surveys of overviews on MCDM/MADM methods, Technol. Econ. Dev. Econ. 20 (2014) 165–179.
- [14] J. Antucheviciene, Z. Kala, M. Marzouk, E.R. Vaidogas, Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research, Math. Probl. Eng. 2015 (2015) 1–16, Article ID 362579.
- [15] O. Ditlevsen, H.O. Madsen, Structural Reliability Methods, John Wiley & Sons, Chichester, 1996.
- [16] Code. Model, Joint Committee of Structural Safety, JCSS, 2001 Available from: http://www.jcss.ethz.ch.
- [17] C. Rebelo, N. Lopes, L. Simões da Silva, D. Nethercot, PMM Vila Real, Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams. Part 1: Variability of the Eurocode 3 resistance model, J. Construct. Steel Res. 65 (2009) 818–831.
- [18] Z. Kala, Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections, J. Civil Eng. Manage. 21 (7) (2015) 902–911.
- [19] D. Schillinger, V. Papadopoulos, M. Bischoff, M. Papadrakakis, Buckling analysis of imperfect I-section beam-columns with stochastic shell finite elements, Comput. Mech. 46 (3) (2010) 495–510.
- [20] S.Moradi,M.S.Alamb,A.S.Milani, Cyclic response sensitivity of post-tensioned steel connections using sequential fractional factorial design, J. Construct. Steel Res. 112 (2015) 155–166.
- [21] M. Kotełko, P. Lis, M. Macdonald, Load capacity probabilistic sensitivity analysis of thin-walled beams, Thin-Walled Struct. 115 (2017) 142–153.
- [22] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output, Des. Estim. Total Sensit. Index 181 (2) (2010) 256–270.
- [23] R. Sousa, J. Guedes, H. Sousa, Characterization of the uniaxial compression behaviour of unreinforced Masory - sensitivity analysis based on a numerical and experimental approach, Arch. Civil Mech. Eng. 15 (2015) 532–547.
- [24] J. Ferreiro-Cabello, E. Fraile-Garcia, E. Martinez-Camara, M. Perez-de-la-Parte, Sensitivity analysis of Life Cycle Assessment to select reinforced concrete structures with one-way slabs, Eng. Struct. 132 (2017) 586–596.
- [25] O. Mirza, S.K. Shill, F. Mashiri, D. Schroot, Behaviour of retrofitted steel structures using cost effective retrofitting techniques, J. Construct. Steel Res. 131 (2017) 38–50.
- [26] E. Borgonovo, E. Plischke, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res. 248 (3) (2016) 869–887.
- [27] P. Wei, Z. Lu, J. Song, Variable importance analysis: a comprehensive review, Reliab. Eng. Syst. Saf. 142 (2015) 399–432.
- [28] F. Ferretti, A. Saltelli, S. Tarantola, Trends in sensitivity analysis practice in the last decade, Sci. Total Environ. 568 (2016) 666–670.
- [29] I.M. Sobol', Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp. 1 (4) (1993) 407–414 (Translated from Russian. Sobol', IM. Sensitivity estimates for nonlinear mathematical models. Matematicheskoe Modelirovanie 2 (1) (1990) 112–118.).
- [30] I.M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul. 55 (1–3) (2001) 271–280.
- [31] A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis, Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 2004.
- [32] E. Patelli, H.J. Pradlwarter, G.I. Schuëller, Global sensitivity of structural variability by random sampling, Comput. Phys. Commun. 181 (12) (2010) 2072–2081.
- [33] D. Mukherjee, B.N. Rao, A. Meher Prasad, Global sensitivity analysis of unreinforced masonry structure using high dimensional model representation, Eng. Struct. 33 (4) (2011) 1316–1325.
- [34] Z. Kala, Sensitivity and reliability analyses of Lateran - torsional buckling resistance of steel beams, Arch. Civil Mech. Eng. 15 (2015) 1098–1107.
- [35] Z. Hu, S. Mahadevan, Uncertainty quantification in prediction of material properties during additive manufacturing, Scr. Mater. 135 (2017) 135–140.
- [36] A.H. Arshian, G. Morgenthal, Probabilistic assessment of the ultimate load-bearing capacity in laterally restrained twoway reinforced concrete slabs, Eng. Struct. 150 (2017) 52–63.
- [37] K. Cheng, Z. Lu, Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression, Comput. Struct. 194 (2018) 86–96.
- [38] J. Fort, T. Klein, N. Rachdi, New sensitivity analysis subordinated to a contrast, Commun. Stat.-Theory Methods 45 (15) (2016) 4349–4364.
- [39] S. Xiao, Z. Lu, Structural reliability sensitivity analysis based on classification of model output, Aerospace Sci. Technol. 71 (2017) 52–61.
- [40] F.M. Bartlett, R.J. Dexter, M.D. Graeser, J.J. Jelinek, B.J. Schmidt, T.V. Galambos, Updating standard shape material properties database for design and reliability, Eng. J. 40 (1) (2003) 2–14.
- [41] J. Melcher, Z. Kala, M. Holický, M. Fajkus, L. Rozlívka, Design characteristics of structural steels based on statistical analysis of metallurgical products, J. Construct. Steel Res. 60 (3–5) (2004) 795–808.
- [42] A. Strauss, Z. Kala, K. Bergmeister, S. Hoffmann, D. Novák, The object of this contribution is the comparison of the statistical characteristics of yield strength, ultimate strength and ductility of Austrian and Czech steels [Technologische eigenschaften von stählen im europäischen vergleich], Stahlbau 75 (1) (2006) 55–60.
- [43] J. Melcher, Z. Kala, M. Karmazínová, M. Fajkus, M. Holický, L. Rozlívka, L. Puklický, Statistical evaluation of material characteristics and their influence on design strength of structural steel of S355, Proc. of Int. Conf. Eurosteel 2008 (2008) 809–814.
- [44] L. Simões da Silva, C. Rebelo, D. Nethercot, L. Marques, R. Simões, P.M.M. Vila Real, Statistical evaluation of the lateral - torsional buckling resistance of steel I-beams. Part 2: Variability of steel properties, J. Construct. Steel Res. 65 (2009) 832–849.
- [45] Z. Kala, J. Melcher, L. Puklický, Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products, J. Civil Eng. Manage. 15 (3) (2009) 299–307.
- [46] A. Sadowski, J.M. Rotter, T. Reinke, T. Ummenhofer, Statistical analysis of the material properties of selected structural carbon steels, Struct. Saf. 53 (2015) 26–35.
- [47] S. Shayan, K.J.R. Rasmussen, H. Zhang, Probabilistic modelling of residual stress in advanced analysis of steel structures, J. Construct. Steel Res. 101 (2014) 407–414.
- [48] H. Pasternak, G. Kubieniec, Implementation of longitudinal welding stresses into structural calculation of steel structures, J. Civil Eng. Manage. 22 (1) (2016) 47–55.
- [49] M. Zeinoddini, B.W. Schafer, Simulation of geometric imperfections in cold-formed steel members using spectral representation approach, Thin-Walled Struct. 60 (2012) 105–117.
- [50] S. Shayan, K. Rasmussen, H. Zhang, On the modelling of initial geometric imperfections of steel frames in advanced analysis, J. Construct. Steel Res. 98 (2014) 167–177.
- [51] M.D. McKey, W.J. Conover, R.J. Beckman, A comparison of the three methods of selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 239–245.
- [52] R.C. Iman, W.J. Conover, Small sample sensitivity analysis techniques for computer models with an application to risk assessment, Commun. Stat. – Theory Methods 9 (17) (1980) 1749–1842.
- [53] Z. Kala, J. Valeš, J. Jönsson, Random fields of initial out of straightness leading to column buckling, J. Civil Eng. Manage. 23 (7) (2017) 902–913.
- [54] Z. Kala, J. Valeš, Global sensitivity analysis of Lateran - torsional buckling resistance based on finite element simulations, Eng. Struct. 134 (2017) 37–47.
- [55] A.I.J. Forrester, A.J. Keane, Recent advances in surrogatebased optimization, Prog. Aerospace Sci. 45 (2009) 50–79.
- [56] J. Wu, Z. Luo, J. Zheng, C. Jiang, Incremental modeling of a new high-order polynomial surrogate model, Appl. Math. Model. 40 (2016) 4681–4699.
- [57] W. Liu, X. Wu, L. Zhang, J. Zheng, J. Teng, Global sensitivity analysis of tunnel-induced building movements by a precise metamodel, J. Comput. Civil Eng. 31 (5) (2017) 1–16. , http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000681, Article number 04017037.
- [58] P. Kaim, Spatial buckling behaviour of steel members under bending and axial compression, (Ph.D. thesis), Technischen Universität Graz, 2004.
- [59] ANSYS Theory Release 15.1, ANSYS Inc., 2014.
- [60] ENV 1993-1-5:12006, Eurocode 3: Design of Steel Structures – Part 1.5: Plated structural elements, CEN – European committee for Standardization, Brussels (Belgium), 2006.
- [61] J. Jönsson, T.C. Stan, European column buckling curves and finite element modelling, J. Construct. Steel Res. 128 (2017) 136–151.
- [62] J. Valeš, Z. Kala, Mesh convergence study of solid FE model for buckling analysis, Proc. of 15th Int. Conf. ICNAAM 2017 (2017) 1–4.
- [63] Z. Kala, J. Valeš, Stochastic assessment and lateral - torsional buckling design of I-beams, J. Construct. Steel Res. 139 (2017) 110–122.
- [64] Z. Kala, Sensitivity assessment of steel members under compression, Eng. Struct. 31 (6) (2009) 1344–1348.
- [65] M. Abambres, W.M. Quach, Residual stresses in steel members: a review of available analytical expressions, Int. J. Struct. Integr. 7 (1) (2016) 70–94.
- [66] J. Valeš, Sensitivity analysis of static resistance of slender beam under bending, in: AIP Conf. Proc., vol. 1738, 2016, http://dx.doi.org/10.1063/1.4952169, 380008-1–380008-4.
- [67] J. Valeš, Z. Kala, Weak axis buckling – elastic resistance of a column, in: CD Proc. of 23rd Int. Conf. on Engineering Mechanics, 2017, 1014–1017, Accession Number: WOS: 000411657600243.
- [68] A.K. Kazantzi, T.D. Righiniotis, M.K. Chryssanthopoulos, The effect of joint ductility on the seismic fragility of a regular moment resisting steel frame designed to EC8 provisions, J. Construct. Steel Res. 64 (2008) 987–996.
- [69] G.C. Soares, Uncertainty modelling in plate buckling, Struct. Saf. 5 (1) (1988) 17–34.
- [70] Z. Mendera, M. Suchodola, Partial safety factors in designing of steel structures according to Eurocods, Inżynieria i Budownictwo 12 (2013) 667–672 (in Polish).
- [71] M. Rhode, Zur Qualitätssicherung Mechanishe Eigenschaften von Baustahl, (PhD thesis), Technischen Universität Braunschweig, 1987.
- [72] A. Saltelli, P. Annoni, How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw. 25 (2010) 1508–1517.
- [73] Z. Kala, Global sensitivity analysis in stability problems of steel frame structures, J. Civil Eng. Manage. 22 (3) (2016) 417–424.
- [74] ENV 1993-1-1:1992, Eurocode 3: Design of Steel Structures – Part 1.1: General Rules and Rules for Buildings, CEN – European committee for Standardization, Brussels (Belgium), 1992.
- [75] T. Tankova, L. Marques, A. Andrade, L. Simões da Silva, A consistent methodology for the out-of-plane buckling resistance of prismatic steel beam-columns, J. Construct. Steel Res. 128 (2017) 839–852.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-91234d78-8add-457d-9cee-a858c17ea7f2