PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic splitting tensile behaviour and statistical scaling law of hybrid basalt-polypropylene fibre-reinforced concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic splitting tensile behaviour of hybrid basalt‒polypropylene fibre-reinforced concrete (HBPRC) was investigated, and the reinforcing mechanism of the fibres was explored. The results indicate that the dynamic splitting tensile strength and dynamic energy dissipation capacity of HBPRC increased with strain rate. The effects of fibre type and content on the strain rate sensitivity of dynamic splitting tensile strength were consistent with that of dynamic dissipation energy. Furthermore, the dynamic splitting tensile strength of concrete was improved by adding appropriate content of basalt fibre (BF) and polypropylene fibre (PF), and the improving effect of hybrid BF and PF was the most significant. Excess fibres reduced the dynamic splitting tensile strength at low strain rates but improved it at high strain rates. The addition of fibres improved the dynamic dissipation energy and the impact resistance of concrete. With an increase in the strain rate, the pull-out lengths of BF and PF decreased gradually. When using hybrid BF and PF, the failure morphology of BF did not change considerably, although PF underwent more severe damage. Based on the weakest-link theory, a calculation model for the statistical scaling law of dynamic splitting tensile strength considering the strain rate effect was established.
Rocznik
Strony
123--144
Opis fizyczny
Bibliogr. 57 poz., fot., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
  • State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
  • State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, People’s Republic of China
Bibliografia
  • [1] Walton PL, Majumdar AJ. Cement-based composites with mixtures of different types of fibres. Compos. 1975;6(5):209–16.
  • [2] Choi JI, Lee BY. Bonding properties of basalt fiber and strength reduction according to fiber orientation. Mater. 2015;8(10):6719–27.
  • [3] Branston J, Das S, Kenno SY, Taylor C. Mechanical behaviour of basalt fibre reinforced concrete. Constr Build Mater. 2016;124:878–86.
  • [4] Fiore V, Scalici T, Di BG, Valenza A. A review on basalt fibre and its composites. Compos Part B Eng. 2015;74:74–94.
  • [5] Jiang C, Fan K, Wu F, Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater Des. 2014;58:187–93.
  • [6] Li ZX, Li CH, Shi YD, Zhou XJ. Experimental investigation on mechanical properties of hybrid fibre reinforced concrete. Constr Build Mater. 2017;157:930–42.
  • [7] Lyer P, Kenno SY, Das S. Mechanical properties of fiber-reinforced concrete made with basalt filament fibers. J Mater Civ Eng. 2015;27(11):04015015.
  • [8] Li M, Gong F, Wu Z. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete. Constr Build Mater. 2020;245:118424.
  • [9] Dilbas H, Çakir Ö. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Constr Build Mater. 2020;254:119216.
  • [10] Asprone D, Cadoni E, Lucolano F, Prota A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem Concr Compos. 2014;53:52–8.
  • [11] Smarzewski P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Compos Struct. 2019;209:23–33.
  • [12] Wang D, Ju Y, Shen H, Xu L. Mechanical properties of high performance concrete reinforced with basalt fiber and polypro-pylene fiber. Constr Build Mater. 2019;197:464–73.
  • [13] Li WM, Xu JY. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A. 2009;513–514:145–53.
  • [14] Zhang H, Gao YW, Li F, Lu F. Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate. J Cent Sout Univ (Sci Tech). 2013;44(8):3464–73.
  • [15] Fu Q, Niu D, Zhang J, Huang D, Wang Y, Hong M, Zhang L. Dynamic compressive mechanical behaviour and modelling of basalt-polypropylene fibre-reinforced concrete. Arch Civ Mech Eng. 2018;3(18):914–27.
  • [16] Fu Q, Xu W, Li D, Li N, Niu D, Zhang L, Guo B, Zhang Y. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: Experimental characterisation and strength criterion. Cem Concr Compos. 2021;118:103954.
  • [17] Guo YB, Gao GF, Jing L, Shim VPW. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate. Int J Impact Eng. 2019;125:188–211.
  • [18] Wu MX, Qin C, Zhang CH. High strain rate splitting tensile tests of concrete and numerical simulation by mesoscale particle elements. J Mater Civ Eng. 2014;26(1):71–82.
  • [19] Chen X, Ge L, Zhou J, Wu S. Dynamic Brazilian test of concreto using split Hopkinson pressure bar. Mater Struct. 2017;50:1.
  • [20] Chen M, Zhong H, Wang H, Zhang M. Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension. Cem Concr Compos. 2020;114:103764.
  • [21] Khan MZN, Hao Y, Hao H, Shaikh FA. Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cem Concr Compos. 2019;104:103343.
  • [22] Zhao X, Li Q, Xu S. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test. Constr Build Mater. 2020;246:118416.
  • [23] Feng KN, Ruan D, Pan Z, Collins F, Bai Y, Wang CM, Hui W. Effect of strain rate on splitting tensile strength of geopolymer concrete. Mag Concr Res. 2014;66(16):825–35.
  • [24] Zhang H, Bai L, Qi Y, Hong H, Neupane A, Pan Q. Impact of splitting tensile properties and dynamic constitutive model of fly ash concrete. J Mater Civ Eng. 2020;32(8):04020225.
  • [25] Klepacako JR, Brara A. An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng. 2001;25(4):387–409.
  • [26] Brara A, Klepacako JR. Experimental characterization of concrete in dynamic tension. Mech Mater. 2006;38(3):253–67.
  • [27] Schuler H, Mayrhofer C, Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng. 2006;32(10):1635–50.
  • [28] Erzar B, Forquim P. An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech. 2010;50(7):941–55.
  • [29] Chen XD, Chen C, Xu LY, Shao Y. Dynamic flexural strength of concrete under high strain rates. Mag Concr Res. 2017;69:109–19.
  • [30] Asprone D, Cadoni E, Prota A. Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates. ACI Struct J. 2009;106:106–13.
  • [31] Ross CA, Thompson PY, Tedesco JW. Split-Hopkinson pressure bar tests on concrete and mortar in tension and compression. ACI Mater J. 1989;86:475–81.
  • [32] Guo H, Tao J, Chen Y, Li D, Jia B, Zhai Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr Build Mater. 2019;224:504–14.
  • [33] Xu Z, Hao H, Li HN. Dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Mater Des. 2012;42:72–88.
  • [34] Xu Z, Hao H, Li HN. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Cem Concr Res. 2012;42(11):1475–93.
  • [35] Li X, Zhang Y, Shi C, Chen X. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr Build Mater. 2020;259:119796.
  • [36] Lei W, Yu Z. A statistical approach to scaling size effect on strength of concrete incorporating spatial distribution of flaws. Constr Build Mater. 2016;122:702–13.
  • [37] Lei WS. A generalized weakest-link model for size effect on strength of quasi-brittle materials. J Mater Sci. 2018;53:1227–45.
  • [38] Lei W, Qian G, Yu Z, Berto F. Statistical size scaling of compressive strength of quasi-brittle materials incorporating specimen length-to-diameter ratio effect. Theor Appl Fract Mech. 2019;104:102345.
  • [39] Chen X, Wu S, Zhou J. Compressive strength of concrete cores under high strain rates. J Perform Constr Facil. 2015;29(1):06014005.
  • [40] Li D, Niu D, Fu Q, Luo D. Fractal characteristics of pore structure of hybrid basalt-polypropylene fibre-reinforced concrete. Cem Concr Compos. 2020;109:103555.
  • [41] GB, T50081–2002. Testing methods of mechanical properties of normal concrete. China: China Building Materials Academy; 2002.
  • [42] Chen W, Song B. Split Hopkinson (Kolsky) bar: design, testing and applications. 2011.
  • [43] Chen D, Liu F, Yang F, Jing L, Feng W, Lv J, Luo Q. Dynamic compressive and splitting tensile response of unsaturated poliester polymer concrete material at different curing ages. Constr Build Mater. 2018;177:477–98.
  • [44] Chen X, Wu S, Zhou J. Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique. J Mater Civ Eng. 2014;26(6):04014005.
  • [45] Branston J, Das S, Kenno SY, Taylor C. Influence of basalt fibres on free and restrained plastic shrinkage. Cem Concr Compos. 2016;74:182–90.
  • [46] Alrshoudi F, Mohammadhosseini H, Tahir MM, Alyousef R, Alghamdi H, Alharbi Y, Alsaif A. Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J Build Eng. 2020;26:101522.
  • [47] Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B Eng. 2005;36(6–7):504–51.
  • [48] Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Metselaar HSC, Jumaat MZ. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Tech. 2016;122:73–81.
  • [49] Nili M, Afroughsabet V. The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Mater Sci Eng A. 2012;531:107–11.
  • [50] Nili M, Afroughsabet V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int J Impact Eng. 2010;37(8):879–86.
  • [51] Yoo DY, Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem Concr Compos. 2016;73:267–80.
  • [52] Romualdi JP, Mandel JA. Tensile strength of concrete affected by uniformly dispersed and closely spaced short length of wire reinforcement. ACI J Proc. 1964;61(6):657–71.
  • [53] Yan DM. Experimental and theoretical study on the dynamic properties of concrete Ph.D. thesis, Dalian University of Technology, Dalian, China. 2006.
  • [54] CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland. 1990.
  • [55] Malvar LJ, Ross CA. Review of strain rate effects for concrete in tension. ACI Mater J. 1998;96(6):735–9.
  • [56] Feng W, Liu F, Yang F, Li L, Jing L. Experimental study on dynamic split tensile properties of rubber concrete. Constr Build Mater. 2018;165:675–87.
  • [57] Lei W. Statistical size scaling of ceramic strength. J Am Ceram Soc. 2019;102:90–7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-912264d6-e987-4f4b-a858-a094f44b5729
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.