PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Surfactant Properties on the Performance of Forward Osmosis Membrane Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wastewater treatments such as forward osmosis (FO) can be widely applied to separate or the reject substances from secondary treated effluents. Experimental studies have investigated the influence of membrane fouling and operating conditions. The performance of FO is affected by membrane fouling characteristics, composition of the feed solution and operating conditions. The experiments were performed using an osmotic membrane (FO-4040) to investigate the influences of operating conditions on water flux and reverse salt selectivity. The surfactant content, cross-flow velocity, and pH of the feed solution were systematically investigated for their effects on FO performance. The results showed that higher cross-flow velocities, increase of the pH of the feed solution, and adding surfactant into the feed solution yielded higher water fluxes. Reverse salt selectivity also increased after adding a surfactant to the feed solution but showed no significant increase at higher surfactant concentrations.
Rocznik
Strony
10--17
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Phayathai Rd., Wangmai Pratumwan, Bangkok 10330, Thailand
autor
  • Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
  • Department of Community Health Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand
  • Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Phayathai Rd., Wangmai Pratumwan, Bangkok 10330, Thailand
Bibliografia
  • 1. Boo C., Lee S., Elimelech M., Meng Z., Hong S. 2012. Colloidal fouling in forward osmosis: Role of reverse salt diffusion. Journal of Membrane Science, 390, 277-284.
  • 2. Cath T.Y., Childress A.E., Elimelech M. 2006. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1-2), 70-87.
  • 3. Childress A.E., Deshmukh S.S. 1998. Effect of humic substances and anionic surfactant on the surface charge and performance of reverse osmosis membrane. Desalination, 118, 167-174.
  • 4. Cornelissen E.R., Harmsen D., de Korte K.F., Ruiken C.J., Qin J.J., Oo H., Wessels L.P. 2008. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 319, 158–168.
  • 5. Devia Y.P., Imai T., Higuchi T., Kanno A., Yamamoto K., Sekine M., Le T.V. 2015. Potential of magnesium chloride for nutrient rejection in forward osmosis. Journal of Water Resource and Protection, 7(9), 11.
  • 6. Hoek E.M.V., Elimelech M. 2003. Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes. Environmental Science & Technology, 37(24), 5581-5588.
  • 7. Kaya Y, Aydiner C., Barlas H., Keskinler B. 2006. Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs). Journal Membrane Science, 282, 401-412.
  • 8. Kertész S.Z., Lászlób Z.S., Horváth S.Z.H., Hodúr C. 2008. Analysis of nanofiltration parameters of removal of an anionic detergent. Desalination, 221, 303-311.
  • 9. Klaysom C., Cath T.Y., Depuydt T., Vankelecom I.F.J. 2013. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews. 42, 6959-6989.
  • 10. Lee S., Cho J., Elimelech M. 2005. Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. Journal of Membrane Science, 262(1-2), 27-41.
  • 11. Lutchmiah K., Verliefde A.R., Roest K., Rietveld L.C., Cornelissen E.R. 2014. Forward osmosis for application in wastewater treatment: A review. Water Research, 58, 179-197.
  • 12. Mi B., Elimelech M. 2008. Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science, 320(12), 292-302.
  • 13. Mukerjee P., Mysels K.J. 1971. Critical micelle concentrations of aqueous surfactant systems. U.S. National Bureau of Standards; for sale by the Supt. of Docs., U.S. Govt. Print. Off.
  • 14. Nguyen N.T., Nguyen N.C., Chen S.S., Li C.W., Hsu H.T., Wu S.T. 2015. Innovation in draw solute for practical zero salt reverse in forward osmosis desalination. Industrial & Engineering Chemistry Research. 54(23) 6067-6074.
  • 15. Ruengruehan K., Kim H., Haiyen L.T., Lee W., Kang S. 2014. Fatty acids fouling on forward osmosis membrane: impact of pH. Desalination and water treatment, 57(16), 7531-7537.
  • 16. Paria S., Khilar K.C. 2004. A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Advances in Colloid and Interface Science, 110(3), 75-95.
  • 17. Phillip W.A., Yong J.S., Elimelech M. 2010. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environmental Science & Technology, 44(13), 5170-5176.
  • 18. She Q. 2008. Effect of hydrodynamic conditions and feedwater composition on fouling of ultrafiltration and forward osmosis membranes by organic macromolecules. M.Eng. Thesis. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
  • 19. She Q., Jin X., Li Q., Chuyang Y.T. 2012. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes. Water Research, 46(7) 2478-2486.
  • 20. Shibuya M., Yasukawa M., Takahashi T., Miyoshi T., Higa M., Matsuyama H. 2015. Effects of operating conditions and membrane structures on the performance of hollow fiber forward osmosis membranes in pressure assisted osmosis. Desalination, 365, 381-388.
  • 21. Suh C., Lee S. 2013. Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution. Journal of Membrane Science, 427, 365-374.
  • 22. Valladares L.R., Yangali-Quintanilla V., Li Z., Amy G. 2011. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research, 45, 6737-44.
  • 23. Yang J.S., Baek K., Yang J.W. 2005. Crossflow ultrafiltration of surfactant solutions. Desalination, 184(1-3), 385-394.
  • 24. Yuan X., Xiaoyu P., Chuyang Y.T., Shiang F., Shengzhe N. 2010. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. Journal of Membrane Science, 348(1-2), 298–309.
  • 25. Zhao S., Zou L., Tang C.Y., Mulcahy D. 2012. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 396, 1-21.
  • 26. Zhao P., Gao B., Yue Q., Shon H.K. 2015. The performance of forward osmosis process in treating the surfactant wastewater: The rejection of surfactant, water flux and physical cleaning effectiveness. Chemical Engineering Journal, 281, 688-695.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9121ded5-9f2e-4307-bb68-8bd53a27b16c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.