PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abrasion Resistance of Nickel- and Iron-base Hardfacings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is directed to the problem of hardfacing and restoration of worn industrial equipment. Wear tests were carried out using especially built rig which reproduces working conditions of machinery applied in cement plants. The results of tribological tests on 20 Fe- and Ni-base hardfacings are presented. The effect of hardfacing hardness and chemical com-position was evaluated. It was found in SEM examinations that matrix was removed from the zone adjacent to carbides which made them liable to cracking and digging out. The mechanism of matrix removal depended on its hardness and include microcutting and low cycle fatigue. Ni-based hardfacings outperformed Fe-based coatings. The abrasion resistance of the best Ni-base coating, the Stelcar 6 was 38.7 times higher than that of S235JR steel. Eutectics in Ni-base coatings disturb motion of abrasive grains and force them to rotate in-stead of sliding over hardfacing surface. Ni-based coatings can be considered in hardfacing or reclamation of numerous industrial components applied in cement plants.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology
Bibliografia
  • 1. Heath G.R., Skora J. New materials & process developments for preventative maintenance and repair in cement plants in Proc. 40th Cement Industry Technical Conference, Raid City, SD, May 17-21, 1998.
  • 2. Al-Moussawi M.A.M. A study on the failure of steel chains in rotary cement kilns. Metallography, microstructure and analysis 2018; 7: 53-167.
  • 3. Tylkin M.A., Bogomolov B.N., Sharkova A.M. Mechanism of failure of heat exchangers in cement furnaces. Metallovedenie i Termicheskaya Obrabotka Metallov 1977; 3: 56-58.
  • 4. www.voestalpine.com, Tailor-made protectivity solutions for the cement industry.
  • 5. Kallel M., Zouch F., Antar Z., Bahri A., Elleuch K.K. Hammer premature failure in mineral crushing process. Tribology International 2017; 115: 493-505.
  • 6. Hejwowski T., Weroński A. Studies on the extension of the service life of large industrial fans. Journal of Materials Processing Technology 1995; 54: 144-148.
  • 7. Fortini A., Suman A., Zanini N. An experimental and numerical study of the solid particle erosion damage in an industrial large seized fan. Engineering failure analysis 2023; 146: 107058.
  • 8. Domazet Ż, Krstulovic-Opara L., Stupalo M. Fatigue cracks and failures in cement industry, shipbilding and power plant facilities. Engineering failure Analysis 2005; 12: 819-833.
  • 9. Hejwowski T., Weroński A. Selected wear issues of machine and equipment components in synergetic conditions. Polish Academy of Sciences, Cracow Branch 2008.
  • 10. Hawk J.A., Wilson R.D., Tylczak J.H., Doĝan Ö.N. Laboratory abrasive wear tests:investigation of test methods and alloy correlation Wear 225-229, 1999, 1031-1042.
  • 11. Gharahbagh E.A., Rostami J., Palomino A.M. New soil abrasion testing method for soft ground tunelling applications. Tunelling and Underground Space Technology 2011; 26: 604-613.
  • 12. Jensen L.R.D., Fundal E., Møller P., Jespersen M. Prediction of wear rates in comminution equipment. Wear 2010; 269: 525-533.
  • 13. Bembenek M., Prysyazhnyuk P., Shihab T., Machnik R., Ivanov O., Ropyak L. Microstructure and wear chatacterization of the Fe-Mo-B-C-based hardfacing alloys deposited by flux-cored arc welding. Materials 2022; 15: 5074.
  • 14. Fan L., Dong Y., Chen H., Dong L., Yin Y. Wear properties of plasma transferred arc Fe-based coatings reinforced by spherical WC particles. Journal of Wuhan University of Technology-Mater. Sci. Ed.. https://doi.org/10.1007/s11595-019-2070-6.
  • 15. Appiah A.N.S., Bialas O., Żuk M., Czupryński A., Sasu D.K., Adamiak M. Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology. Materials Science Poland 2022; 40(3): 42-63.
  • 16. Hejwowski T., Szewczyk S., Weroński A. An investigation of the abrasive and erosive wear of flame sprayed coatings. Journal of Materials Processing Technology 2000; 106: 54-57.
  • 17. Stutzman P., Leigh S. Phase composition analysis of NIST reference clinkers by optical microscopy and x-ray diffraction. NIST Technical Note 1441 2002.
  • 18. Hökfors B., Boström D.,Viggh E., Backman R. On the phase chemistry of Portland cement clinker. Advances in Cement Research 2015; 27(1): 50-60.
  • 19. Szymański A., Szymański J.M. Hardness estimation of minerals, rocks and ceramic materials. PWN Warsaw Poland,1989.
  • 20. Sapate S.G., RamaRao A.V. Erosive wear of weld hardfacing high chromium irons: effect of erodent particles. Tribology International 2006; 39: 206-212, 21. Velez K., Maximilien S., Damidot D., Fantozzi G., Sorrentino F. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement and Concrete Research 2001;31:555-561.
  • 22. Conde A., Zubrini F., De Damborenea J. Cladding of Ni-Cr-B-Si coatings with a high power diode laser .Materials Science and Engineering 2002; A334: 233-238,
  • 23. Reinaldo P.R., Oliveira A.S.C.M. NiCrSiB coatings deposited by plasma transferred arc on different steel substrates. Journal of Materials Engineering and Performance 2013; 22(3): 590-597.
  • 24. Guoqing C., Xuesong F., Yanhui W., Shan L., Wenlong Z. Microstructure and wear properties of nickel-based surfacing deposited by plasma transferred arc welding. Surface and Coating Technology 2013; 228(suppl.1): 276-282.
  • 25. Szala M., Hejwowski T., Walczak M. Factors influencing cavitation erosion of NiCrSiB hardfacings deposited by oxy-acetylene powder welding on grey cast iron. Advances in Science and Technology Research Journal 2021; 15(4): 376-386.
  • 26. Hejwowski T. Erosive and abrasive wear resistance of overlay coatings. Vacuum 2009; 83:166-170.
  • 27. González R., Garcia M.A., Peñuelas I., Cadenas M., del Rocio Fernandez M., Hernández Battes A., Felueroso D. Microstructural study of NiCrBSi coatings obtained by different processes. Wear 2007; 263: 619-624.
  • 28. Harsha S., Dwivedi D.K., Agarwal A. Influence of CrC addition in Ni-Cr-Si-B flame sprayed coatings on microstructure, microhardness and wear behaviour. International Journal of Advanced Manufacturing Technology 2008; 38: 93-101.
  • 29. Berns A., Fischer A. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and M Materials Characterization 1997; 39: 499-527.
  • 30. Zhou X., Li Y., Sun C., Chen L., Fang F., Jiang J. Optimization on mechanical properties of transition metal carbides: A combined experimental and theoretical study. Materials Chemistry and Physics 2022; 282: 125955.
  • 31. Dumovic M. Repair and maintenance procedures for heavy machinery components. Welding Innovation 2003; 20(1): 2-6.
  • 32. Kotecki D.J., Ogborn J.S. Abrasion resistance of iron-based hardfacing alloys. Welding Research Supplement 1995: 269-s-278-s.
  • 33. Chang C.-M., Chen Y.-C., Wu W. Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy. Tribology International 2010; 43: 929-934.
  • 34. Chen J.-H., Hsieh C.-C., Hua P.-S., Chang C.-M., Lin C.-M., Wu P.-T.-Y., Wu W. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by gas tungsten arc welding (GTAW). Met. Mater. Int. 2013; 19(1): 91-98.
  • 35. Buchely M.F., Gutierrez J.C., León L.M., Toro A. The effect of microstructure on abrasive wear of hardfacing alloys. Wear 2005;259:52-61.
  • 36. Szala M., Szafran M., Drozd K. Abrasive wear mechanisms of S235JR, S355J2, C45, AISI 304 and Hardox 500 steels tested using garnet, corundum and corundum abrasives. Advances in Science and Technology Research Journal 2023; 17(2): 147-160.
  • 37. Wells J.J., Wigley F., Foster, D.J. Gibb W.H., Wiliamson J. The relationship between excluded matter and the abrasion index of a coal. Fuel 2004; 83: 359-364.
  • 38. Wells J.J., Figley F., Foster D.J., Livingston W.R., Gibb W.H., Wiliamson J. The nature of mineral atter in a coal and the effects on erosive and abrasive behaviour. Fuel Processing Technology 2005; 86:535-550.
  • 39. Pintaude G., Bernardes F.G., Santos M.M., Siantora A., Albertin E. Mild and severe ear of steels and cast irons in sliding abrasion. Wear 2009; 267:19-25.
  • 40. Budinski K.G. Adhesive transfer to abrasive particles in abrasion testing. Wear 2011; 271: 1258-1263.
  • 41. Su Y.-T., Hung T.-C., Ou C.-C. A preliminary analysis on tool wear rate of polishing process. Wear 2006; 260: 50-61.
  • 42. de Mello J.D.B., Polycarpou A.A.. Abrasive wear mechanisms of multi component ferrous alloys abraded by soft, fine abrasive particles Proceedings of CIST2008& ITS-IFToMM2008 Beijing, China, 388-389.
  • 43. Kishore K.,Sarkar K., Arora K.S. Effect of alloying elements on microstructure, wear and corrosion behavior of Fe-based hardfacing. Welding in the World 2023, https://doi.org/10.1007/s40194-023-01588-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9119564f-e7da-487a-abd4-1714386922ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.