PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Photomultiplier tube signal conditioning for high-temperature applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ionizing radiation detection in harsh environment conditions often requires additional signal processing to match the requirements of the commercial data readout systems. The subject of this paper is the design of the high-temperature (HT) signal conditioning module that ensures the applicability of scintillation detectors that utilize photomultiplier tubes (PMT) with moderate sampling rate instrumentation. The design was developed for the operation in HT environments (up to 120°C). In order to achieve the optimal signal shape, the module combines a charge amplifi er and a low-pass fi ltering circuitry. An embedded power supply section makes it a complete, standalone unit requiring a single 12 V supplying line. A comprehensive analysis of the developed device, named “PreAmp Shape”, was conducted in order to prove the intended functionality over the different working conditions.
Czasopismo
Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 St., 05-400 Otwock-Świerk, Poland
Bibliografia
  • 1. Watson, J., & Pachchigar, M. (2015). A low power data acquisition solution for high temperature electronics applications. In IMAPSource Proceedings 2015 (HiTEN), 6–8 July 2015, Cambridge, UK, pp. 255–260. https://imapsource.scholasticahq.com/article/66746.
  • 2. Andal, J. M. (2019). Power plant and thermoeconomics modelling of low- to intermediate-temperature geothermal resource in Montelago, Philippines. UNU-GTP Report. United Nations University.
  • 3. HT-DAB-1. (2015). High temperature data acquisition evaluation and reference design kit. Vorago Technologies. https://satsearch.co/products/vorago-technologies-ht-dab-1-high-temperature-data--acquisition-kit.
  • 4. Gierlik, M., Kaźmierczak, Ł., Borsuk, S., Burakowska, A., Burakowski, S., Gosk, M., Guzik, Z., Kaźmierczak, T., Krakowski, T., Lotz, T., Rzadkiewicz, J., Sobkowicz, P., Szeptycka, M., Szewiński, J., & Urban, A. (2018). Practical aspects of using beta-delayed gamma emission for copper ore analysis on a running belt conveyor. Appl. Radiat. Isot., 142, 187–193. https://doi.org/10.1016/j.apradiso.2018.10.001.
  • 5. Gierlik, M., Borsuk, S., Guzik, Z., Iwanowska-Hanke, J., Kaźmierczak, Ł., Korolczuk, S., Kozłowski,T., Krakowski, T., Marcinkowski, R., Świderski, Ł., Szeptycka, M., Szewiński, J., & Urban, A. (2016). SWAN – Detection of explosives by means of fast neutron activation analysis. Nucl. Instrum. MethodsPhys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 834(20), 16–23.
  • 6. Sibczyński, P., Kownacki, J., Moszyński, M., Iwanowska-Hanke, J., Syntfeld-Każuch, A., Gójska, A., Gierlik, M., Kaźmierczak, Ł., Jakubowska, E. A., Kędzierski, G., Kujawiński, Ł., Carrel, F., Ledieu, M., & Lainé, F. (2015). Verifi cation of threshold activation detection (TAD) technique in prompt fi ssion neutron detection using scintillators containing 19F. J. Instrum., 10, T09005. DOI: 10.1088/1748-0221/2015/09/T09005.
  • 7. Hou, Y., Liu, S., Yuan, H., Gui, Q., Zhang, C., Fang, Z., & Zhang, M. (2019). Study on high-temperature performance of LaBr3(Ce) scintillators. IOP Conf. Series: Materials Science and Engineering, 678, 012084. DOI: 10.1088/1757-899X/678/1/012084.
  • 8. Guzik, Z., & Krakowski, T. (2013). Algorithms for digital γ-ray spectroscopy. Nukleonika, 58(2), 333–338.
  • 9. Guzik, Z., Borsuk, S., Traczyk, K., & Plominski, M. (2006). TUKAN – an 8K pulse height analyzer and multichannel scaler with a PCI or USB interface. IEEE Trans. Nucl. Sci., 53(1), 231–235.
  • 10. Flyckt, S. -O. & Marmonier, C. (Eds.). (2002). Photomultiplier tubes principles & applications (Chapter 5. Supply and operating advices). Brive, France: Photonis.
  • 11. Pactitis, S. A. (2007). Active fi lters – theory and design. Boca Raton-London-New York: CRS Press.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9116efa2-b761-426a-995e-e9064e4b2b0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.