PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Convection and heat transfer analysis of Cu-water rotatory flow with non-uniform heat source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article explores the phenomenon of natural convection in the rotatory flow of Cu-water nanofluid under the influence of non-uniform heat source. In order to design more effective and efficient cooling systems, this work attempts to increase our understanding of how nanofluids behave in the presence of non-uniform heat sources, convection, and rotatory force. The higher order partial differential equations governing the flow are remodelled into ordinary differential equations using similarity transformations. The remodelled equations were solved using shooting methodology and the Lobatto-III A algorithm. The impacts of various parameters such as the Richardson number (1 < Ri < 4), the Schmidt number (0.5 < Sc < 2), nanoparticle’s volume fraction (0.02 < ϕ < 0.08), etc. on velocity, concentration and temperature was analysed. One of the main findings of this analysis was study of the impact of the space dependent heat source (0.2 ≤ A ≤ 1) and the temperature dependent internal heat source (0 ≤ B ≤ 0.5) on the heat regulation. Furthermore, increasing the quantity of the nano-additives and improving the fluid’s thermophysical properties intensified the acceleration of the fluid elements in the flow region. The presence of spatial and temperature-sensitive parameters facilitated quantification of the effects of a standard and variable heat source in combination of Coriolis force in the case of a Cu-water flow. The findings of the investigation will be helpful in the process of medical, architectural planning systems, oil recovery systems and so on.
Rocznik
Strony
149--157
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Mathematics, CVR College of Engineering, Hyderabad, India
  • Department of Physics and Electronics, St. Joseph’s Degree & PG College, 5-9-1106 King Koti, Main Road, Hyderabad - 500029, Telangana, India
  • Department of Mathematics & Statistics, St.Joseph's Degree & PG College, 5-9-1106 King Koti, Main Road, Hyderabad - 500029, Telangana, India
  • Department of Mathematics, Koneru Lakshmaiah Education Foundation, Telangana, India
  • Department of Humanities and Sciences, CVR College of Engineering, Telangana, India
Bibliografia
  • [1] Ragupathi, P., Hakeem, A.K.A., Al-Mdallal, Q.M., Ganga, B., & Saranya, S. (2019). Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate. Case Studies in Thermal Engineering, 15, 100521. doi: 10.1016/j.csite.2019.100521
  • [2] Hyder, A., Lim, Y. J., Khan, I., & Shafie, S. (2023). Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet. ACS Omega, 32(8), 29424–29436.
  • [3] Iftikhar, N., Rehman, A., & Sadaf, H. (2021). Theoretical investigation for convective heat transfer on Cu/water nanofluid and (SiO2-copper)/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon. International Communications in Heat and Mass Transfer, 120, 105012. doi: 10.1016/j.icheatmasstransfer.2020.105012
  • [4] Hazarika, S., Ahmed, S., & Yao, S.-W. (2023). Investigation of Cu-water nano-fluid of natural convection hydro-magnetic heat transport in a Darcian porous regime with diffusion-thermo. Applied Nanoscience, 13(1), 283–293. doi: 10.1007/s13204-020-01655-w
  • [5] Uddin, M.J., & Rasel, S.K. (2019). Numerical analysis of natural convective heat transport of copper oxide-water nanofluid flow inside a quadrilateral vessel. Heliyon, 5(5), e01757. doi: 10.1016/j.heliyon.2019.e01757
  • [6] Babu, R.S., Kumar, B.R., & Makinde, O.D. (2018). Chemical reaction and thermal radiation effects on MHD mixed convection over a vertical plate with variable fluid properties. Defect and Diffusion Forum, 387, 332–342. doi: 10.4028/www.scientific.net/DDF.387.332
  • [7] Yacob, N.A., Dzulkifli, N.F., Salleh, S.N.A., Ishak, A., & Pop, I. (2022). Rotating flow in a nanofluid with CNT nanoparticles over a stretching/shrinking surface. Mathematics, 10(1), 7. doi:10.3390/math10010007
  • [8] Mehrez, Z., El Cafsi, A., Belghith, A., & Le Quéré, P. (2015). MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. Journal of Magnetism and Magnetic Materials, 374, 214–224. doi: 10.1016/j.jmmm.2014.08.010
  • [9] Punith Gowda, R.J., Naveen Kumar, R., Jyothi, A.M., Prasannakumara, B.C., & Sarris, I.E. (2021). Impact of binary chemical reaction and activation energy on heat and mass transfer of Marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes, 9(4), 702. doi: 10.3390/pr9040702
  • [10] Shahzad, F., Jamshed, W., Sajid, T., Nisar, K.S., & Eid, M.R. (2021). Heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable surface. Communications in Theoretical Physics, 73(7), 75004. doi: 10.1088/1572-9494/abf8a1
  • [11] Ashraf, M., Ullah, Z., Zia, S., Alharbi, S.O., Baleanu, D., & Khan, I. (2021). Analysis of the physical behavior of the periodic mixed-convection flow around a nonconducting horizontal circular cylinder embedded in a porous medium. Journal of Mathematics, 2021(1), 8839146. doi: 10.1155/2021/8839146
  • [12] Ullah, Z., Akkurt, N., Alrihieli, H.F., Eldin, S.M., Alqahtani, A.M., Hussanan, A., et al. (2022). Temperature-dependent density and magnetohydrodynamic effects on mixed convective heat transfer along magnetized heated plate in thermally stratified medium using Keller box simulation. Applied Sciences, 12(22),11461. doi: 10.3390/app122211461
  • [13] Khan, M.N., & Nadeem, S. (2020). Theoretical treatment of bioconvective Maxwell nanofluid over an exponentially stretching sheet. Canadian Journal of Physics, 98(8), 732–741. doi:10.1139/cjp-2019-0380
  • [14] Khan, M.N., Hussien, M.A., Allehiany, F.M., Ahammad, N.A., Wang, Z., & Algehyne, E.A. (2023). Variable fluid properties and concentration species analysis of a chemically reactive flow of micropolar fluid between two plates in a rotating frame with cross diffusion theory. Tribology International, 189, 108943. doi:10.1016/j.triboint.2023.108943
  • [15] Khan, M.N., Ahmad, S., Alrihieli, H.F., Wang, Z., Hussien, M. A., & Afikuzzaman, M. (2023). Theoretical study on thermal efficiencies of Sutterby ternary-hybrid nanofluids with surface catalyzed reactions over a bidirectional expanding surface. Journal of Molecular Liquids, 391 B, 123412. doi: 10.1016/j.molliq.2023.123412
  • [16] Sathyanarayana, M., & Goud, T.R. (2023). Numerical study of MHD Williamson-nano fluid flow past a vertical cone in the presence of suction/injection and convective boundary conditions. Archives of Thermodynamics, 44(2), 115‒138. doi: 10.24425/ather.2023.146561
  • [17] Madhusudhana Rao, B., Gopal D., Kishan N., Ahmed Saad, & Durga Prasad P. (2020). Heat and mass transfer mechanism on three-dimensional flow of inclined magneto Carreau nanofluid with chemical reaction. Archives of Thermodynamics, 41(2),223‒238. doi: 10.24425/ather.2020.133630
  • [18] Das, S., Jana, N.R., & Makinde, O.D. (2014). MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non-uniform heat generation/absorption. International Journal of Nanoscience, 13(3), 1–12. doi: 10.1142/S0219581X14500197
  • [19] Oke, A.S., Prasannakumara, B.C., Mutuku, W.N., Gowda, R.J. P., Juma, B.A., Kumar, R.N., & Bada, O.I. (2022). Exploration of the effects of Coriolis force and thermal radiation on waterbased hybrid nanofluid flow over an exponentially stretching plate. Scientific Reports, 12, 21733. doi: 10.1038/s41598-022-21799-9
  • [20] Owhaib, W., Basavarajappa, M., & Al-Kouz, W. (2021). Radiation effects on 3D rotating flow of Cu-water nanoliquid with viscous heating and prescribed heat flux using modified Buongiorno model. Scientific Reports, 11, 20669. doi: 10.1038/s41598-021-00107-x
  • [21] Ragulkumar, E., Palani, G., Sambath, P., & Chamkha, A.J. (2023). Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux. Scientific Reports, 13, 2878. doi: 10.1038/s41598-023-28702-0
  • [22] Jalili, P., Sadeghi Ghahare, A., Jalili, B., & Domiri Ganji, D. (2023). Analytical and numerical investigation of thermal distribution for hybrid nanofluid through an oblique artery with mild stenosis. SN Applied Sciences, 5(95). doi: 10.1007/s42452-023-05312-z
  • [23] Farrukh, B.M., Chen, G.M., & Tso, C.P. (2021). Viscous dissipation effect on CuO-water nanofluid-cooled microchannel heat sinks. Case Studies in Thermal Engineering, 26, 101159. doi:10.1016/j.csite.2021.101159
  • [24] Sheikholeslami, M., Ashorynejad, H.R., Domairry, G., & Hashim, I. (2012). Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system. Journal of Applied Mathematics, 2012(1), 421320. doi:10.1155/2012/421320
  • [25] Hayat, T., Imtiaz, M., & Alsaedi, A. (2016). Melting heat transfer in the MHD flow of Cu–water nanofluid with viscous dissipation and Joule heating. Advanced Powder Technology, 27(4), 1301–1308. doi: 10.1016/j.apt.2016.04.024
  • [26] Owhaib, W., Basavarajappa, M., & Al-Kouz, W. (2021). Radiation effects on 3D rotating flow of Cu-water nanoliquid with viscous heating and prescribed heat flux using modified Buongiorno model. Scientific Reports, 11(1), 20669. doi: 10.1038/s41598-021-00107-x
  • [27] Triveni, B., Rao, M. V.S., Gangadhar, K., & Chamkha, A.J. (2023). Heat transfer analysis of MHD Casson nanofluid flow over a nonlinear stretching sheet in the presence of nonuniform heat source. Numerical Heat Transfer, Part A: Applications, 85(13), 2145–2164. doi:10.1080/10407782.2023.2219831
  • [28] Khan, U., Zaib, A., Khan, I., & Nisar, K. S. (2020). Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual solutions. Journal of Materials Research and Technology, 9(1), 188‒199. doi:10.1016/j.jmrt.2019.10.044
  • [29] Aybar, H., Sharifpur, M., Azizian, M.R., Mehrabi, M., & Meyer, J.P. (2015). A review of thermal conductivity models for nanofluids. Heat Transfer Engineering, 36(13), 1085‒1110. doi:10.1080/01457632.2015.987586
  • [30] Gamaoun, F., Ullah, Z., Ameer Ahammad, N., Fadhl, B.M., Makhdoum, B.M., & Abbas Khan, A. (2023). Effects of thermal radiation and variable density of nanofluid heat transfer along a stretching sheet by using Keller box approach under magnetic field. Thermal Science and Engineering Progress, 41, 101815.doi: 10.1016/j.tsep.2023.101815
  • [31] Prathiba, A., & Akavaram, V.L. (2022). Numerical investigation of a convective hybrid nanofluids around a rotating sheet. Heat Transfer, 51(4), 3353‒3372. doi: 10.1002/htj.22454
  • [32] Hayat, T., Nadeem, S., & Khan, A.U. (2020). Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface. Applied Nanoscience, 10(8), 2897‒2906. doi: 10.1007/s13204-019-01036-y
  • [33] Mohd Zin, N.A., Khan, I., Shafie, S., & Alshomrani, A.S. (2017). Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium. Results in Physics, 7, 288‒309. doi: 10.1016/j.rinp.2016.12.032
  • [34] Abbas, W., & Magdy, M.M. (2020). Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3, and TiO2 over a moving rotating plate and impact of various nanoparticle shapes. Mathematical Problems in Engineering, 2020. doi: 10.1155/2020/9606382
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-910a0cab-9254-49fc-97d7-4b387f6faa73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.