PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131–1156 K and 1.93–6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109–241 W/(m2K) and 111–240 W/(m2), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
Rocznik
Strony
91--122
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wz.
Twórcy
  • Institute of Advanced Energy Technologies, Czestochowa University of Technology, Dabrowskiego 73, 42-200 Czestochowa, Poland
  • Jan Dlugosz University in Czestochowa, Faculty of Mathematics and Natural Sciences, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Bibliografia
  • [1] Chinsuwan A., Dutta A.: An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating fluidized bed. Int. J. Heat Mass Tran. 52(2009), 5-6, 1552–1560.
  • [2] Nag P.K., Nawsher M., Basu P.: A mathematical model for the predicted of heat transfer from finned surfaces in a circulating fluidized bed. Int. J. Heat Mass Tran. 38(1995), 9, 1675–1681.
  • [3] Lockhart C., Zhu J., Brereton C.M.H., Lim C.J., Grace J.R.: Local heat transfer, solids concentration and erosion around membrane tubes in a cold model circulating fluidized bed. Int. J. Heat Mass Tran. 38(1995), 13, 2403–2410.
  • [4] Luan W., Bowen B.D., Lim C.J., Brereton C.M.H., Grace J.R.: Suspensionto-membrane-wall heat transfer in a circulating fluidized bed combustor. Int. J. Heat Mass Tran. 43(2000), 7, 1173–1185.
  • [5] Krzywanski J., Nowak W.: Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach. Int. J. Heat Mass Tran. 55(2012), 15-16, 4246–4253.
  • [6] Basu P., Cheng L.: An experimental and theoretical investigation into the heat transfer of a finned water wall tube in a circulating fluidized bed boiler. Int. J. Energ. Res. 24(2000), 4, 291–308.
  • [7] Blaszczuk A., Nowak W., Jagodzik S.: Bed-to-wall heat transfer in a supercritical circulating fluidised bed boiler. Chem. Process Eng. 35(2014), 2, 191–204.
  • [8] Blaszczuk A., Nowak W.: Heat transfer behavior inside a furnace chamber of large-scale supercritical CFB reactor. Int. J. Heat Mass Tran. 87(2015), 464–480.
  • [9] Blaszczuk A., Nowak W.: The impact of bed temperature on heat transfer characteristic between fluidized bed and vertical riffled tubes. J. Therm. Sci. 25(2016), 5, 476–483.
  • [10] Dutta A., Basu P.: Overall heat transfer to water walls and wing walls of commercial circulating fluidized bed boilers. J. Energy Inst. 75(2002), 504, 85–90.
  • [11] Dutta A., Basu P.: An Improved cluster-renewal model for estimation of heat transfer coefficients on the furnace walls of commercial circulating fluidized boilers. J. Heat Transfer 126(2005), 6, 1040–1043.
  • [12] Andersson B.Å., Leckner B.: Experimental methods of estimating heat transfer in circulating fluidized bed boilers. Int. J. Heat Mass Tran. 35(1992), 17, 3353–62, DOI:10.1016/0017-9310(92)90222-E.
  • [13] Wedermann C.C., Werther J.: Heat transfer in large-scale circulating fluidized bed combustors of different sizes. In: Circulating Fluidized Bed Technology IV, American Institute of Chemical Engineers (A. Avidan, Ed.), New York 1994.
  • [14] Cheng L., Wang Q., Shi Z., Luo Z., Ni M., Cen K.: Heat transfer in a largescale circulating fluidized bed boiler. Front. Energ. Power Eng. China 1(2007), 4, 477–82.
  • [15] Lentunen T.: Advanced control methods for reducing nitrogen oxides in a fluidized bed boiler. Ph.D. thesis, Lappeenranta University of Technology, Lappeenranta 2001.
  • [16] Karppanen E.: Advanced control of an industrial circulating fluidized bed boiler using fuzzy logic. Academic dissertation, University of Oulu, Oulu 2000.
  • [17] Yin J.F., Liu L.: Optimization of main steam pressure control system in circulating fluidized bed boiler. Guangdong Electr. Power 24(2011), 10, 58–65.
  • [18] Jaronen T., Kerschabaum R.: Advanced controls – fuzzy logic for fluidized bed boiler. AT&P Journal PLUS 2(2008), 24–28.
  • [19] Yang J.Q., Zhao W.J., Guo R., Zhang W.J.: Analysis and design of control system of circulating fluidized bed boilers. Chinese J. Power Eng. 25(2005), 4, 517–522.
  • [20] Li M., Xu X.D.: Circulating fluidized bed boiler control system. Journal of Tsinghua University (Science and Technology) 42(2002), 5, 665–668.
  • [21] Krzywanski J., Nowak W.: Modeling of bed-to-wall heat transfer coefficient in a large-scale CFBC by fuzzy logic approach. Int. J. Heat Mass Tran. 94(2016), 327–334.
  • [22] Basu P., Nag P.K.: Heat transfer to walls of a circulating fluidized-bed furnace. Chem. Eng. Sci. 51(1996), 1, 1–26.
  • [23] Glicksman L.R.: Circulating fluidized bed heat transfer. In: Circulating Fluidized Bed Technology II, (P. Basu, J.F. Large, Eds.). Pergamon Press, Oxford 1988.
  • [24] Di Natale F., Lancia A., Nigro R.: A single particle model for surface-to-bed heat transfer in fluidized beds. Powder Technol. 187(2008), 68–78.
  • [25] Gupta A.V.S.S.K.S., Reddy B.V.: Bed-to-wall heat transfer modeling in the top region of a CFB riser column with abrupt riser exit geometries. Int. J. Heat Mass Tran. 48(2005), 21-22, 4307–4315.
  • [26] Chen J.C., Grace J.R., Golriz M.R.: Heat transfer in fluidized beds: Design methods. Powder Technol. 150(2005), 2, 123–132.
  • [27] Karimipour S., Zarghami R., Mostoufi N., Sotudeh-Gharebagh R.: Evaluation of heat transfer coefficient in gas-solid fluidized beds using cluster-based approach. Powder Technol. 172(2007), 1, 19–26.
  • [28] Chen C.C., Cimini R.J., Dou S.S.: A theoretical model for simultaneous convective and radiative and heat transfer in circulating fluidized bed. In: Circulating Fluidized Bed Technology II, (P. Basu, J.F. Large, Eds.). Pergamon Press, Oxford 1988.
  • [29] Leckner B.: Heat transfer in circulating fluidized bed boilers. In: Circulating Fluidized Bed Technology III, (P. Basu , J.F. Large, Eds.). Pergamon Press, Oxford 1991.
  • [30] Mahalingam M., Kolar A.K.: Heat transfer model for the membrane wall of a high temperature circulating fluidized bed. In: Basu P., Horio M., Hasatani M., editors. Circulating Fluidized Bed Technology III, Pergamon Press, Oxford 1991.
  • [31] Mahalingam M., Kolar A.K.: Emulsion layer model for wall heat transfer in a circulating fluidized bed. AIChE 37(1991), 8, 1139–1150.
  • [32] Hua Y., Flamant G., Lu J., Gauthier D.: Modeling of axial and radial solid segregation in a CFB boiler. Chem. Eng. Process. 43(2004), 8, 971–978.
  • [33] Blaszczuk A., Zylka A., Leszczynski J.: Simulation of mass balance behavior in a large-scale circulating fluidized bed reactor. Particuology 25(2016), 51–58.
  • [34] Basu P., Fraser S.: Circulating Fluidized Bed boiler – Design and Operation. Butterworths-Heinemann, Stoneham 1991.
  • [35] Johansson A., Johnsson F., Leckner B.: Solids back-mixing in CFB boilers. Chem. Eng. Sci. 62(2007), 1-2, 561–73.
  • [36] Zhang W., Johnsson F., Leckner B.: Fluid-dynamic boundary layers in CFB boilers. Chem. Eng. Sci. 50(1995), 2, 201–210.
  • [37] Harris A.T, Davidson J.F.: A core-annulus deposition model for circulating fluidized bed risers. In: Circulating Fluidized Bed Technology IV, (A. Avidan, Ed.). AIChE, New York 1994.
  • [38] Horio M.: Hydrodynamics. In: Circulating Fluidized Bed, ( J.R. Grace, A.A. Avidan, T.M. Knowlton, Eds.). Blackie Academic & Professional, London 1997.
  • [39] Blaszczuk A., Nowak W.: Bed-to-wall heat transfer coefficient in a supercritical CFB boiler at different bed particle sizes. Int. J. Heat Mass Tran. 79(2014), 736–749.
  • [40] Vijay G.N., Reddy B.V.: Effect of dilute and dense phase operating conditions on bed-to-wall heat transfer mechanism in a circulating fluidized bed combustor. Int. J. Heat Mass Tran. 48(2005), 16, 3276–3283.
  • [41] Baskakov A.P.: High Speed Non-Oxidative Heating and Heat Treatment in a Fluidized Bed. Metallurgia, Moscow 1968.
  • [42] Gelperin N.I., Einstein V.G.: Heat transfer in fluidized bed. In: Fluidization, (J.F.Davidson, D. Harrison, Eds.). Academic Press, London 1971.
  • [43] Wen C.Y., Miller E.N.: Heat transfer in solid-gas transport lines. Ind. Eng. Chem. Res. 53(1961), 1, 51–53.
  • [44] Basu P., Cheng L., Cen K.: Heat transfer in a pressurized circulating fluidized bed. Int. J. Heat Mass Tran. 39(1996), 13, 2711–2722.
  • [45] Haider A., Levenspiel O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58(1989), 1, 63–70.
  • [46] Golriz M.R.: An experimental correlation for temperature distribution at the membrane wall of CFB boilers. Proc. 13th Int. Conf. on Fluidized Bed Combustion, Orlando, May 7–10, 1995.
  • [47] Borodulya V.A., Teplitsky Yu S.: Prediction of average heat transfer coefficients between a riser’s wall and circulating fluidized bed: effect of pressure and temperature. In: Circulating Fluidized Bed Technology VI, (J. Werther, Ed.), DECHEMA, 1999.
  • [48] Grace J.R.: Fluidized bed heat transfer. In: Handbook of Multiphase Flow, (G. Hestroni, Ed.). McGraw-Hill, Hemisphere, Washington 1982.
  • [49] Basu P.: Heat transfer in high temperature fast fluidized beds. Chem. Eng. Sci. 45(1990), 10, 3123–3136.
  • [50] Golriz M.R., Sunden B.: An analytical – empirical model to predict heat transfer coefficient in circulating fluidized bed combustor. Heat Mass Trans. 30(1995), 6, 377–383.
  • [51] Brewster M.Q.: Effective absorptivity and emissivity of particulate medium with application to a fluidized bed. J. Heat Transfer 108(1986), 3, 710–713.
  • [52] http://www.fuzzylite.com/qt/
  • [53] Gopal M.: Digital control and state variable methods: conventional and intelligent control system, 2nd Edn. Tata-McGraw, Singapore 2009.
  • [54] Driankov D., Hellendoorn H., Reinfrank M.: An introduction to fuzzy control. Springer-Verlag, New York 1995.
  • [55] Timothy Ross J.: Fuzzy Logic with Engineering Applications. John Wiley and Sons, Chichester 2004.
  • [56] Blaszczuk A., Leszczynski J., Nowak W.: Simulation model of the mass balance in a supercritical circulating fluidized bed combustor. Powder Technol. 246(2013), 317–326.
  • [57] Błaszczuk A.: Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor. Arch. Thermodyn. 36(2015), 3, 61–83.
  • [58] Origin Pro 8 User Guide. OriginLab Corporation, 2007.
  • [59] LuanW., Lim C.J., Brereton C.M.H., Bowen B.D., Grace J.R.: Experimental and theoretical study of total and radiative heat transfer in circulating fluidized beds. Chem. Eng. Sci. 54(1999), 17, 3749–3764.
  • [60] Andersson B.Å., Leckner B.: Local lateral distribution of heat transfer on tube surface of membrane walls in CFB boilers. Proc. 4th Int. Conf. Circulating Fluidized Beds, ( AA Avidan, Ed.). Hidden Valley, 1994.
  • [61] Divilio R.J., Boyd T.J.: Practical implications of the effect of solid suspension density on heat transfer in large-scale CFB boilers. Proc. 4th Int. Conf. Circulating Fluidized Beds, (A.A. Avidan, Ed.), Hidden Valley 1994.
  • [62] Baskakov A., Leckner B., Breitholtz K.: Complex heat transfer furnaces with a circulating fluidized bed. Heat Trans. Res. 32(2001), 7-8, 343–348.
  • [63] Adamczyk W.P., Kozołub P., Klimanek A., Białecki R.A., Andrzejczyk M., Klajny M.: Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion. Appl. Therm. Eng. 87(2015), 127–36.
  • [64] Han G.Y., Cho Y.J.: Radiative heat transfer in a circulating fluidized bed coal combustor. Powder Technol. 102(1999), 3, 266–273.
  • [65] Breitholtz C., Leckner B., Baskakov A.P.: Wall average heat transfer in CFB boilers. Powder Technol. 120(2001), 1-2, 41–48.
  • [66] Andersson B.L.: Effects of bed particle size on heat transfer in circulating fluidized bed boilers. Powder Technol. 87(1996), 239–248.
  • [67] Patil R.S., Pandey M., Mahanta P.: Parametric studies and effect of scale-up on wall-to-bed heat transfer characteristics of circulating fluidized bed risers. Exp. Therm. Fluid Sci. 35(2011), 3, 485–494.
  • [68] Kolar A.K., Sundaresan R.: Heat transfer characteristic at an axial tube in a circulating fluidized bed riser. Int. J. Therm. Sci. 41(2002), 7, 673–681.
  • [69] Breitholz C., Leckner B., Baskakov A.P.: Wall average heat transfer in CFB boilers. Proc. 3rd European Conf. on Fluidization, Toulouse 2000.
Uwagi
EN
This work was financially supported by scientific research No. BS-PB-406/301/11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-910135de-ddb5-44a0-bd6d-c9eecac46a14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.