Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Application of laser desorption/ionization techniques in the identification of lipids as prostate cancer biomarkers
Języki publikacji
Abstrakty
Mass spectroscopy has grown enormously over the past century and its variations are used in many fields. One of the methods used to ionize particles is to irradiate the sample with laser radiation. This methods are called laser desorption/ionization techniques and they have great potential for diagnostic applications. Thanks to the so-called soft ionization, direct analysis of a wide variety of compound classes can be used for rapid profiling. Lipids are a diverse group of metabolites that share a common feature of having a hydrophobic fragment. They play an important role in various cellular processes. Changes in lipidome correlate with the symptoms of various diseases. The observation of abnormalities in lipid metabolism is especially important in cancers diagnosed in many patients - such as prostate cancer. Monitoring the level of key biomarkers in the development of a given disease will allow for an earlier correct diagnosis and the use of individual treatment. This short review presents the issues of prostate cancer and the applicability of laser desorption/ionization techniques to identify lipid biomarkers that can be used for rapid identification.
Wydawca
Czasopismo
Rocznik
Tom
Strony
893--909
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
- Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu
- Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu
autor
- Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu
autor
- Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu
- Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu
autor
- Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu
autor
Bibliografia
- [1] T. Ahem, Rajagopal, Toxicol. Sci., 2014,137.
- [2] A. Pakiet, J. Kobiela, P. Stepnowski, T. Sledzinski, A. Mika, Lipids Health Dis., 2019,18,1.
- [3] C. Z. Ulmer, C. M. Jones, R. A. Yost, T. J. Garrett, J. A. Bowden, Anal. Chim. Acta, 2018, 1037, 35.
- [4] L.F. Eggers, D. Schwudke, “Encyclopedia of Lipidomics,” Encycl. Lipidomics, vol. 3,2019.
- [5] C. Breil, M. Abert Vian, T. Zemb, W. Kunz, F. Chemat, Int. J. Mol. Sci., 2017,18,1.
- [6] L.F. Eggers, “Encyclopedia of Lipidomics,” Encycl. Lipidomics, 2019.
- [7] V. Matyash, G. Liebisch, T.V. Kurzchalia, A. Shevchenko, D. Schwudke, J. Lipid Res., 2008, 49,113.
- [8] R.E. Patterson, A.J. Ducrocq, D.J. McDougall, T.J. Garrett, R.A. Yost, J. Chromatogr. В Anal. Technol. Biomed. Life Sci., 2015,1002,260.
- [9] J. Sostare et al., Anal. Chim. Acta, 2018,1037, 301.
- [10] “Cancer Research UK,” https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer#heading-Zero [dostęp: 2021-05-10].
- [11] A.Z. Femandis, M.R. Wenk, J. Chromatogr. В Anal. Technol. Biomed. Life Sci., 2009, 877, 2830.
- [12] R.M. Califf, Exp. Biol. Med., 2018, 243,213.
- [13] N.L. Henry, D. F. Hayes, Mol. Oncol., 2012, 6,140.
- [14] L.M. Butler, M. M. Centenera, J. V Swinnen, Endocr. Relat. Cancer, 2016, 23, R219.
- [15] G. Larrouy-Maumus, Curr. Med. Chem., 2018, 26, 1924.
- [16] F. Yan, H. Zhao, Y. Zeng, Clin. Transí. Med., 2018, 7,21.
- [17] R. Sutphen et ah, Cancer Epidemiol. Biomarkers Prev., 2004,13,1185.
- [18] L. Lin et ah, Hepatology,2017, 66,432.
- [19] G.F. Giskeødegård et al, Br. J. Cancer, 2015,113,1712.
- [20] J. Van Brooklyn, Mini-Reviews Med. Chem., 2007, 7, 984.
- [21] M.H. Yang et al, Am. J. Gastroenterol., 2013,108, 833.
- [22] X. Zhou et al, PLoS One, 2012, 7.
- [23] H. Kim, H. K. Min, G. Kong, M. H. Moon, Anal. Bioanal. Chem., 2009, 393, 1649.
- [24] WHO, “Poland, Source: Globocan 2020,” 2020. https://gco.iarc.fr/today/data/factsheets/populations/616-poland-fact-sheets.pdf [dostęp: 2021-05-10].
- [25] K.A.O. Tikkinen et al., BMJ, 2018, 362.
- [26] X. Zhou, J. Glycomics Lipidomics, 2014, 04.
- [27] K. Jelonek, M. Ros, M. Pietrowska, P. Widlak, Clin. Lipidol., 2013, 8,137.
- [28] J. Li et al., Sci. Rep., 2016, 6, 1.
- [29] A. Bajuk, L. Michalak, K. Głuch, Elektron. Konstr. Technol. Zastos., 2001, 42, 51.
- [30] P. Pomastowski, B. Buszewski, Nanomaterials, 2019, 9,1.
- [31] K.P. Law, J.R. Larkin, Anal. Bioanal. Chem., 2011,399, 2597.
- [32] J. Wei, J.M. Buriak, G. Siuzdak, Nature,1999, 399, 243.
- [33] B. Drożdż, “Spektroskopia masowa Materiały do ćwiczeń,” Uniwersytet Jagielloński 2016.
- [34] B. Fuchs, R. Süß, J. Schiller, Prog. Lipid Res., 2010, 49,450.
- [35] J. Leopold, Y. Popkova, K. M. Engel, J. Schiller, Biomolecules, 2018, 8.
- [36] Z. Wang, Y. Cai, Y. Wang, X. Zhou, Y. Zhang, H. Lu, Sci. Rep., 2017, 7, 1.
- [37] L. Ying et al., Journal of the American Society for Mass Spectrometry, 2004,15, 1833.
- [38] T. Goto et al., PLoS One, 2014, 9, 1.
- [39] T. Goto et al., Prostate, 2015, 75, 1821.
- [40] M. Buszewska-Forajta et al., Cancers, 2021, 21,2000.
- [41] A. Kurreck et al., Prostate Cancer Prostatic Dis. 2018, 21,297.
- [42] K. Ossoliński et al., J. Cancer Metastasis Treat., 2019,2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90fd1d10-6751-4207-85de-82e1bdbfaf4e