PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple GMPE for underground mines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple ground motion prediction equation (GMPE) is developed for peak ground velocity, PGV, and for cumulative absolute displacement, CAD, for underground mines. Assuming the ground velocity at source, PGV0 = 0.63vs Δϵ where vs is S-wave velocity and Δϵ is the average strain change at seismic sources (Brune in J Geophys Res 75(26):4997–5009, 1970; Kanamori in Phys Earth Planet Inter 5:426–434, 1972), is independent of seismic potency, P, then PGV(P, R) = PGV0 B , where B = [cL P1/3/R+cL P1/3 )]CR and R is distance. Assuming after Eshelby that at source CAD0 = q0 Δϵ 2/3 P1/3, then CAD(P, R) = CAD0 B, where q0 = 0.828494 . The S-wave velocity and the strain drop are strongly constrained by the type of rock and can be assumed, therefore both GMPE have only two parameters to be inverted from ground motion data: c0 and c0 . There is no provision made for site effect since in mines almost all sensors are placed in boreholes away from excavations. The basic outcome of ground motion hazard analysis for a given site is a seismic hazard curve that shows the annual rate, or probability, at which a specific ground motion level will be exceeded. It is expected that CAD that includes both the peak and the duration of ground motion may be a better indicator of damage potential than PGV alone, being a single measurement over the whole waveform. Two simple applications are presented. (1) A graphical trigger for damage inspection when the PGV predicted for an event at selected sites exceeds a predetermined level. (2) The cumulative CAD plot that may be a useful tool to monitor the consumption of the deformation capacity of the support due to seismicity.
Czasopismo
Rocznik
Strony
837--847
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Institute of Mine Seismology, 50 Huntingfield Avenue, Huntingfield, TAS 7055, Australia
Bibliografia
  • 1. Abrahamson NA, Youngs RR (1992) A stable algorithm for regression analyses using the random effects model. Bull Seismol Soc Am 82(1):505–510
  • 2. Ambraseys NN (1969) Maximum intensity of ground movements caused by faulting. In: Proceedings of the 4th world conference on earthquake engineering, Santiago, A2, pp 154–171
  • 3. Atkinson GM (2015) Ground motion prediction equation for small to moderate events at short hypocentral distances, with application to induced seismicity hazards. Bull Seismol Soc Am 105(2A):981–992. https://doi.org/10.1785/0120140142
  • 4. Ben-Menahem A, Singh SJ (1981) Seismic waves and sources. Springer, New York
  • 5. Bommer JJ, Stafford PJ, Alarcon JE (2009) Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seismol Soc Am 99(6):3217–3233. https://doi.org/10.1785/0120080298
  • 6. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75(26):4997–5009
  • 7. Burridge R (1969) The numerical solution of certain integral equations with non-integrable kernels arising in the theory of crack propagation and elastic wave diffraction. Philos Trans R Soc Lond A 265:353–381
  • 8. Campbell KW (1981) Near-source attenuation of peak horizontal acceleration. Bull Seismol Soc Am 71(6):2039–2070
  • 9. Cichowicz A (2008) Near-field pulse-type motion of small events in deep gold mines: observations, response spectra and drift spectra. In: 14th World conference on earthquake engineering, Beijing, China
  • 10. Cuello D, Mendecki AJ (2017) Ground motion amplification at the skin of excavations. In: Vallejos J (ed) Proceedings 9th international symposium on rockbursts and seismicity in mines, Santiago, Chile
  • 11. Dineva S, Mihaylov D, Hansen-Haug J, Nystrom A, Woldemedhin B (2016) Local seismic systems for study of the effect of seismic waveson rock mass and ground support in Swedish underground mines Zinkgruvan, Garpenberg, Kiruna. Ground Support 2016. Lulea, Sweden, pp 1–11
  • 12. Douglas J (2018) Ground motion prediction equations 1964–2018. Review, University of Strathclyde, Glasgow
  • 13. EPRI (1988) A criterion for determining exceedance of the operating basis earthquake. Technical report EPRI NP-5930, Electrical Power Research Institute, Palo Alto, California
  • 14. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396
  • 15. Esteva L (1970) Seismic risk and seismic design decisions. In: Hansen RJ (ed) Seismic risk and seismic design criteria for nuclear power plants. MIT Press, Cambridge, pp 142–182
  • 16. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350
  • 17. Ida Y (1973) The maximum acceleration of seismic ground motion. Bull Seismol Soc Am 63(3):959–968
  • 18. Joyner WB, Boore DM (1993) Methods for regression analysis of strong motion data. Bull Seismol Soc Am 83(2):469–487
  • 19. Joyner WB, Boore DM (1994) Methods for regression analysis of strong motion data: errata. Bull Seismol Soc America 84(3):955–956
  • 20. Kaiser PK, Maloney SM (1997) Scaling laws for the design of rock support. Pure Appl Geophys 150(3–4):415–434
  • 21. Kanamori H (1972) Determination of effective tectonic stress associated with earthquake faulting. The Tottori earthquake of 1943. Phys Earth Planet Inter 5:426–434
  • 22. Madariaga R (1979) On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J Geophys Res 84(B5):2243–2250
  • 23. McGarr A, Fletcher JB (2001) A method for mapping apparent stress and energy radiation applied to the 1994 Northridge earthquake fault zone: revisited. Geophys Res Lett 28(18):3529–3532. https://doi.org/10.1029/2001GL013094
  • 24. McGarr A, Fletcher JB (2003) Maximum slip in earthquake fault zones, apparent stress, and stick-slip friction. Bull Seismol Soc Am 93(6):2355–2362
  • 25. McGarr A, Fletcher JB (2005) Development of ground-motion prediction equations relevant to shallow mining induced seismicity in the Trail Mountain area. Bull Seismol Soc Am 95(1):31–47. https://doi.org/10.1785/0120040046
  • 26. McGarr A, Green RWE, Spottiswoode SM (1981) Strong ground motion of mine tremors: some implications for near-source ground motion parameters. Bull Seismol Soc Am 71(1):295–319
  • 27. Mendecki AJ (2008) Forecasting seismic hazard in mines. In: Potvin Y, Carter J, Diskin A, Jeffrey R (eds) Proceedings 1st Southern Hemisphere international rock mechanics symposium. Australian Centre for Geomechanics, Perth, pp 55–69
  • 28. Mendecki AJ (2013) Characteristics of seismic hazard in mines: keynote lecture. In: Malovichko A, Malovichko DA (eds) Proceedings 8th international symposium on rockbursts and seismicity in mines. St Petersburg, Moscow, pp 275–292. ISBN 978-5-903258-28-4
  • 29. Mendecki AJ (2016) Mine seismology reference book: seismic hazard, 1st edn. Institute of Mine Seismology, St. Petersburg. ISBN 978-0-9942943-0-2
  • 30. Mendecki AJ (2017) Mapping seismic ground motion hazard: keynote lecture. In: Vallejos J (ed) Proceedings 9th international symposium on rockbursts and seismicity in mines, Santiago, Chile
  • 31. Mendecki AJ (2018) Ground motion prediction equations for DMLZ. Technical PTFI-REP-GMPE-201801-AJMv1, Institute of Mine Seismology
  • 32. Milev AM, Spottiswood SM (2005) Strong ground motion and site response in deep South African mines. J S Afr Inst Min Metall 105:1–10
  • 33. Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bull Seismol Soc Am 65(3):581–626
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90fbbb48-dee1-422a-861f-3d1d007a4ce6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.