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Discrete-time feedback stabilization

WOJCIECH MITKOWSKI, WALDEMAR BAUER and MARTA ZAGÓROWSKA

This paper presents an algorithm for designing dynamic compensator for infinite-
dimensional systems with bounded input and bounded output operators using finite dimensional
approximation. The proposed method was then implemented in order to find the control func-
tion for thin rod heating process. The optimal sampling time was found depending on discrete
output measurements.
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1. Introduction

One of the main areas of automatic control is related to stabilization problems. Usu-
ally, in real time application, an algorithm consisting of two stages is used: 1. Bring the
system to the valid region of linearization. 2. Stabilize the system using linear approxi-
mation. This approach is justified by topological similarity of a nonlinear system and its
linearization (valid only for hyperbolic systems without purely imaginary eigenvalues).

Feedback design (design of the stabilizing controller) depends on the system form
(usually we have either differential equations or transfer function for time invariant sys-
tems).

The design of finite dimensional feedback is useful due to multiple reasons: 1. It
is possible to use simple, finite-dimensional methods, e.g., Lyapunov functions and in
consequence, Lyapunov equations strictly linked with algebraic Riccati equations. 2.
Some of the systems have predefined structure, e.g., the hoisting machine (long line is a
distributed system, and the drive may be modeled with finite-dimensional system).

The design of finite-dimensional controllers for infinite systems with finite set of
unstable modes (or at least weakly damped ones) is widely analyzed in literature. This
class of the systems was described by Triggiani (1975) [34], or even earlier by Fattorini
(1967) [11]. Using small disturbance methods and building appropriate invariant sets,
Schumacher (1981, 1983) [30, 31] proposed finite dimensional stabilizing controllers
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for distributed and delayed systems (see also Kamen (1985) [14]). Similar results were
obtained by Curtain (1984) [4] for parabolic systems with infinite input-output opera-
tors. Also the works of Curtain and Salomon (1986) [5], and Sakawa (1983, 1984, 1985)
[27-29] are worth noticing. Balas (1983) [2] proposed a finite dimensional dynamic com-
pensator for finite dimensional approximations of infinite systems. Similar methods were
proposed by Kobayashi (1983) [16]. Gibson (1981) [13] used finite dimensional approx-
imation of algebraic Riccati equation. The detailed description of those works was done,
e.g., by Mitkowski (1991) [20] with 229 books and papers analyzed.

The design of stabilizing controllers is still an interesting problem (see, e.g.
Przyşuski (2014) [26]), especially as there are more efficient numerical tools. Thanks
to computers, nowadays, we can analyze complex mathematical models of distributed
parameter systems, e.g. models of non-integer order Obrźczka (2014) [22], Sierociuk
(2015) [32], Oprzêdkiewicz (2016) [24] which sometimes better describe real systems.

In this work, we focused on an algorithm of stabilization of linear infinite dimen-
sional system with bounded input and bounded output operators and with finite set of
unstable modes (weakly damped) using finite discrete stabilization. As an example, we
used diffusion equation which models the heating process of a thin rod.

2. Problem description

Consider a closed-loop system (with continuous time) shown in Fig. 1.

Figure 1: Closed-loop system.

Finite dimensional stabilization problem: for a given infinite system S find a sta-
bilizing controller (finite dimensional) such that the closed-loop system is exponentially
stable with predefined damping coefficient.

In digital control, it is necessary to use a discrete system (computer or other device
with discrete time). In order to use a discrete stabilizing controller in continuous time
system, we need to use the system (see Fig. 2) in the form of a series of pulser, con-
tinuous linear system S, and ZOH (Zero Order Hold) with input u(k) and output y(k),
k = 1,2,3, . . . .

If the pulser and ZOH work synchronously with time step h > 0, then the parameters
of discrete linear system Sd denoted for simplicity with A, B, C are given by the formulas
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Figure 2: Continuous-discrete system.

calculated on the basis of continuous system:

A := eAh, B :=
h∫

0

eAtBdt, C :=C (1)

For a valid controller (both continuous and discrete), we need the controllability and
observability of continuous system S. The conditions for time step h> 0 which guarantee
that the discrete system is also controllable and observable are known and may be found,
e.g., in Mitkowski (1991, p. 141) [20].

3. The decomposition of the system

There is a group of infinite dimensional systems which can be stabilized using finite
dimensional methods. Let us now consider a system (see for example Pazy (1983) [25],
Slemrod (1974) [33], Wang (1972) [35], Curtain and Pritchard (1978) [7], Curtain and
Zwart (1995) [8])

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t)
x(t) ∈ X , u(t) ∈U, y(t) ∈ Y

(2)

For further use we will denote it as S(A,B,C). Let us now assume that (2) fulfills the
following conditions:

• X , Y , U – Hilbert spaces, dimU <+∞.

• A is an infinitesimal generator C0 of semi-group TA(t), for t  0 in X .

• B ∈ L(U,X), C ∈ L(X ,Y ) are bounded.

• A is a discrete operator with finite number of eigenvalues with Res > β, β <+∞.
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Taking into account the conditions above, we can decompose (2) into (Triggiani
(1975) [34]):  ẋ1(t)

ẋ2(t)
ẋ3(t)

=

 A1 0 0
0 A2 0
0 0 A3


 x1(t)

x2(t)
x3(t)

+

 B1

B2

B3

 u(t),

y(t) =C1x1(t)+C2x2(t)+C3x3(t),

(3)

xi(t) ∈ Xi, i = 1,2,3,X = X1 +X2 +X3,

dim X1 <+∞, dimX2 = p <+∞.
(4)

The spectrum of A (see (2)) is depicted in the Fig. 3. The operator A1 is responsible
for unstable (or weakly damped) part of the system (3). The operators A2 and A3 are
exponentially stable.

Figure 3: Discrete spectrum of A.

Let us now add the following assumptions:

• sup{Res : s ∈ λ (A3)< 0, sup{Res : s ∈ λ (A2)}= γ < 0.

• The pair (A1, B1) is controllable, the pair (C1, A1) is observable.

• dim X2 = p→+∞ ⇒ ∥B3∥→ 0 and ∥C3∥→ 0.

The last assumption is fulfilled if, e.g., self-adjoint generator A has compact resolvent
(the eigenvectors form a basis of the given space).
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4. Finite-dimensional stabilizing controller

Let us now consider dynamic feedback Mitkowski (1988 [19, p. 519], 1991, [20, p.
233]) of form:[

ẇ1(t)
ẇ2(t)

]
=

[
A1−G1C1 +B1K1 −G1C2

B2K1 A2

][
w1(t)
w2(t)

]
+

[
G1

0

]
y(t),

u(t) = K1w1(t), wi(t) ∈ Xi, i = 1, 2.

(5)

Let us assume that the conditions mentioned in previous section are fulfilled. There
exists a finite dimensional stabilizing controller (5), such that the closed-loop system
(2) with (5) is exponentially stable with predefined damping coefficient α ∈ (γ , 0), see
Sakawa (1983) [27]. See also Mitkowski (1982, 1986, 1988) [17, 19], Mitkowski (1991,
[20, p. 230]) for further details.

The design of feedback (5) may be reduced to finding the matrices K1 and G1 which
can be done using methods known from finite dimensional system’s analysis, e.g., LQ
design. The desired damping coefficient α ∈ (γ , 0) can be found by increasing p =
dimX2.

A discrete version of the controller (Mitkowski (1991, [20, p. 236]) can be obtained
using formulas (1) and remembering that the system is asymptotically stable if the eigen-
values lie inside the unit circle. The matrices K1 i G1 should be found in a way that
guarantees that the eigenvalues of matrices A1 +B1K1 and A1−G1C1 lie inside the unit
circle (for example, we can set them as zeros).

5. Example

Let us now consider the process of heating a thin rod (Oprzedkiewicz (2003, 2016)
[23, 24]) depicted in the Fig. 4.

Figure 4: Heating of a thin rod.
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A simplified mathematical model of the analyzed process has the form

∂x(z, t)
∂t

= a
∂2x(z, t)

∂z2 −Rax(z, t)+b(z)u(t), t > 0, z ∈ [0, 1],

∂x(z, t)
∂z

∣∣∣∣
z=0

=
∂x(z, t)

∂z

∣∣∣∣
z=1

= 0, t > 0,

x(z,0) = 0, z ∈ (0, 1),

y(t) =
1∫

0

c(z)x(z, t)dz.

(6)

where

b(z) =
{

1 f or 0 6 z 6 z0

0 f or z0 < z 6 1

c(z) =
{

c̄ f or z1 6 z 6 z2

0 f or 0 6 z < z1 and z2 < z 6 1

x(z, t) =
∞

∑
i=0

xi(t)hi(z)

After the decomposition, we have system S(A,B,C,D), where

A = diag(λ0, λ1, λ2, ......), B = [b0 b1 b2 .........]
T ,

C = [c0 c1 c2 ..........], D = 0,

and
X = L2(0, 1;R), λi =−i2π2a−Ra, i = 0, 1, 2, ...

hi(z) =

{
1 f or i = 0
√

2cos(iπz) f or i = 1, 2, 3, .....
(7)

bi =

1∫
0

b(z)hi(z)dz, ci =

1∫
0

c(z)hi(z)dz,

we have the following parameters for model (6) (verified in a laboratory, Oprzedkiewicz
(2003, 2004) [26, 21]):

a = 0.000945, Ra = 0.0271, c̄ = 25.7922 z0 = 1/13, z1 = 25/52, z2 = 27/52

From (7), we have

A = diag( - 0.0269 - 0.0358 - 0.0624 - 0.1068 - 0.1690 - 0.2490 - 0.3467
- 0.4621 - 0.5954 - 0.7464 - 0.9152 - 1.1017 - 1.3060 - 1.5281 - 1.7679
- 2.0255 - 2.3009 - 2.5940 - 2.9049 - 3.2335 - 3.5800 - 3.9441 - 4.3261
- 4.7258 - 5.1433)
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B = [0.0769 0.1077 0.1046 0.0995 0.0926 0.0842 0.0745 0.0638
0.0526 0.0412 0.0299 0.0190 0.0090 - 0.0000 - 0.0077 - 0.0139
- 0.0187 - 0.0218 - 0.0234 - 0.0235 - 0.0223 - 0.0200 - 0.0168 - 0.0130

- 0.0087]T

C = [1.0171 0 - 1.4348 - 0.0000 1.4244 - 0.0000 - 1.4070 0.0000
1.3830 - 0.0000 - 1.3524 - 0.0000 1.3156 - 0.0000 - 1.2729 - 0.0000
1.2246 - 0.0000 - 1.1711 - 0.0000 1.1130 - 0.0000 - 1.0507 0.0000 0.9848]

In order to perform the simulation, the heating process was implemented with use of
Matlab/Simulink environment (see Fig. 5).

Figure 5: Simulink system.

The zero-order-hold is necessary to simulate a measurement device (e.g. thermome-
ter) with various sampling times. We used the Tustin method (see e.g., Astrom 1990, [1,
p. 212]) to discretize the compensator and then find the appropriate sampling frequency.
It transforms the continuous system S(A,B,C,D) into a discrete one for a given sampling
time h using the formulas

A+ = (I +
h
2

A)(I− h
2

A)−1

B+ = A−1(A+− I)B

C+ =C

D+ = D

(8)

During the simulation we wanted to find optimal sampling time of the compensator
for various sampling frequencies for temperature measurement. We used the perfor-
mance indicator proposed by Bini and Buttazzo (2014) [3]:

J(N) =
1
N

T∫
0

|u̇(t)|dt (9)

During the simulations, we set T = 200 [s]. For optimization, we used golden search
with parabolic interpolation implemented in Matlab Optimization Toolbox. The opti-
mization constraints were chosen as 1 6 N 6 106. The results are gathered in Tab. 1.
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Table 1: The results of optimization

Temperature sampling Optimal number Sampling time
frequency [Hz] of samples Nopt h = T

Nopt
[s]

10 23700 0.0084
1 23896 0.0083

0.1 68957 0.0029
0.03 84140 0.0024
0.02 48284 0.0041
0.01 69997 0.0028

It can be seen that sampling time of the controller increases with increasing sampling
frequency. This means that we have a buffer in the controller for doing necessary cal-
culations. The accuracy of temperature measurements and controller performance are
depicted in the Figs 6 and 7.

Figure 6: Temperature for various sampling frequencies.
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Figure 7: Control signal for various sampling frequencies.

6. Comparison quality index

For all numerical experiments the golden search with parabolic interpolation method
has been chosen for tuning Nopt parameter. Initial value for all experiments have value 1.

The tests will be conducted for the following quality index:

1.
1
N

T∫
0

|u̇(t)|dt, 2.
1
N

T∫
0

u2dt 3.
1
N

T∫
0

|u|dt 4.
1
N

T∫
0

tudt

I can bee seen, that all quality index give the same result for the same sampling frequen-
cies (see Fig. 8, Fig. 9 and Fig. 10). But calculating are the faster for the quality index of
form 1 (see Tab. 2) .

7. Conclusion

The main purpose of this work was to present possible way of approximating infi-
nite dimensional systems with finite dimensional ones. The resulting system can then be
discretized and implemented in digital controllers. The results were confirmed with sim-
ulation as we analyzed the process of thin rod heating. We found optimal sampling time
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Figure 8: Temperature for various quality index with sampling frequencies 10Hz.

Figure 9: Temperature for various quality index with sampling frequencies 0.01Hz.
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Figure 10: Temperature for various quality index with sampling frequencies 0.1Hz

for the compensator depending on various output sampling frequencies and comparison
result for different quality index.

Nevertheless, the proposed algorithm is general and may be used for control of vari-
ous systems. One of the possible way of applications may be non-integer order diffusion
equation Gal and Warma (2016) [12], see also Evans (2007) [10]. However, it will re-
quire further analysis and research, as the methods for integer order systems cannot be
directly applied to them.
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