PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of liquid hydrogen as a fuel for future passenger aircraft

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie płynnego wodoru jako paliwa do samolotów pasażerskich
Języki publikacji
EN
Abstrakty
EN
The paper briefly reviews a recent initiative on the application of hydrogen as a fuel for future commercial aircraft. Special attention is paid to the benefits of using liquid hydrogen (LH2) to power aircraft engines. A comparison of LH2 to other fuels is presented, as well as a comparison of LH2 hazard to hazard imposed by typical jet fuel. Major attention is focused on the combustion of hydrogen benefits in turbine engines with classic deflagrative combustion chamber and engines utilizing detonative combustion of the hydrogen-air mixture. Benefits and problems with the utilization of LH2 are discussed in this paper.
PL
W artykule dokonano przeglądu niedawnej inicjatywy dotyczącej zastosowania wodoru jako paliwa do przyszłych statków komercyjnych. Szczególną uwagę zwrócono na korzyści z zastosowania ciekłego wodoru (LH2) do zasilania silników lotniczych. Porównano LH2 z innymi paliwami oraz przedstawiono zagrożenia z zastosowania LH2 z zagrożeniami stosowania tradycyjnego silnika odrzutowego. Ponadto, skupiono się również na spalaniu wodoru w silnikach turbinowych z klasyczną deflagracyjną komorą spalania oraz silnikach z detonacyjną komorą spalania mieszanki wodorowo-powietrznej. W artykule omówiono także zalety i problem związane z wykorzystaniem LH2.
Czasopismo
Rocznik
Strony
157--175
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Aviation (Sieć Badawcza Łukasiewicz – Instytut Lotnictwa)
Bibliografia
  • 1. Adamson T.C. Jr., Olsson G.R.: Performance Analysis of a Rotating as a Thrustproducing Mechanism. Jet Propulsion 27(5): 1957.
  • 2. Bach E., Paschereit C.O., Stathopoulos P., Bohon M.D.: Advancement of Empirical Model for Predicting Stagnation Pressure Gain in Rotating Detonation Combustors. AIAA SciTech Forum, January 3-7, 2022, San Diego, CA & Virtual; DOI 10.2514/6.2022-0834.
  • 3. Brewer G.D.: The Case for Hydrogen-Fueled Transport Aircraft. Aeronautics and Astronautics, May 1974.
  • 4. Bruce S., Temminghoff M., Hayward J., Palfreyman D., Munnings C., Burke N., Creasey S.: Opportunities for hydrogen in commercial aviation. 2020.
  • 5. Bykovskii F.A., Mitrofanov V.V., Vedernikov E.F.: Continuous Detonation Combustion of Fuel-Air Mixtures. Combustion, Explosion and Shock Waves, Vol. 33, 1997.
  • 6. Bykovskii F.A., Zhdan S.A., Vedernikov E.F.: Continuous Spin Detonations. Journal of Propulsion and Power, V. 22, No. 6, 2006.
  • 7. Calder P.H., Gupta P.C.: Future SST engines with particular reference to Olympus 593 evaluation and Concorde experience. The Aeronautical Journal, June 1976.
  • 8. Davidenko D., Jouot F., Kudryavtsev A., Dupré G., Gökalp I., Daniau E., Falempin F.: Continuous detonation wave engine studies for space application. 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 Jul., 2007.
  • 9. Dunlap R., Brehm R.L., Nicholls J.A.: A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine. Jet Propul. 28 (7), 1958.
  • 10. Dwivedi S.K., Vishwakarma M.: Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy, 43(46), 2018.
  • 11. Falempin F., Daniau E., Getin N., Bykovskii F.A., Zhdan S.: Toward a continuous detonation wave rocket engine demonstrator. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA2006-7956, Canberra, Australia, 6-9 Nov. 2006.
  • 12. Hayashi A.K., Kimura Y., Yamada T., Yamada E., Kindracki J., Dzieminska E., Wolanski P., Tsuboi N., Fujiwara T.: Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model. AIAA 2009-0633, 2009.
  • 13. Heister S.D., Smallwood J., Harroun A., Dille K., Martinez A., Ballintyn N.: Rotating Detonation Combustion for Advanced Liquid Propellant Space Engines. Aerospace, 9(10), 581; 2022, DOI 10.3390/aerospace9100581.
  • 14. Hishida M., Fujiwara T., Wolanski P.: Fundamentals of rotating detonation. Shock Waves. 19, 2009.
  • 15. Hydrogen Powered Aviation report, pdf, web (ID 8706035).
  • 16. Jones W.P., Tyliszczak A.: Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor. Flow Turbulence Combust, 85:711–734, 2010, DOI 10.1007/s10494-010-9289-9.
  • 17. Kawalec M., Perkowski W., Łukasik B., Bilar A., Wolański P.: Applications of the continuously rotating detonation to combustion engines at the Łukasiewicz – Institute of Aviation. Combustion Engines, 191(4), 2022, DOI 10.19206/CE-145409.
  • 18. Kawalec M., Perkowski W., Wolański P.: Development of Rocket Engines with Detonation Combustion Chamber. In: Research on detonative propulsion in Poland, ed. Wolański P., pp. 163-181, Institute of Aviation Scientific Publication, Warsaw 2021.
  • 19. Kawalec M., Wolański P.: Development of Rocket Engine with Continuously Rotating Detonation supplied by Liquid Propellants. Proceeding of EUCASS, Lille, France, 27 June-1 July, 2022.
  • 20. Kindracki J., Wolański P., Gut Z.: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures. Shock waves, 21:75–84, 2011, DOI 10.1007/s00193-011-0298-y.
  • 21. Kordylewski W. (ed.): Spalanie i paliwa. Wrocław 2008.
  • 22. Kublik D., Kindracki J., Wolański P.: Evaluation of wall heat loads in the region of detonation propagation of detonative propulsion combustion chambers. Applied Thermal Engineering 156, 2019.
  • 23. Mangold J., Brenner F., Moebs N., Strohmayer A.: Aircraft Design Implications of Alternative Fuels for Future Hybrid-Electric Regional Aircraft Configurations. 9th European Conference for Aeronautics and Space Sciences (EUCASS), 27 June - 1 July 2022, Lille, France.
  • 24. Nicholls J.A., Cullen R.E.: The Feasibility of a Rotating Detonation Wave Rocket Motor. The Univ. of Mich., Report No. RPL-TDR-64-113, 1964.
  • 25. Nicholls J.A., et al.: The Feasibility of a Rotating Detonation Wave Rocket Motor. The Univ. of Mich., ORA Report 05179-1-P. 1962.
  • 26. Nicholls J.A.: Wilkinson H.R., Morrison R.B.: Intermediate Detonation as a Thrustproducing Mechanism.” Jet Propulsion 27(5), 1957.
  • 27. RutkowskiJ., Nicholls J.A.: Consideration for the Attainment of a Standing Detonation Wave. Proceedings of the Gas Dynamics Symposium, Northwestern University, 1956.
  • 28. Scholz D.: Design of Hydrogen Passenger Aircraft – How much “Zero-Emission” is Possible?; Hamburg Aerospace Lecture Series (DGLR, RAeS, VDI, ZAL, HAW Hamburg), Hamburg, Germany, 2020-11-19; DOI 10.5281/zenodo.4301104.
  • 29. Shen P.I., Adamson T.C. Jr.: Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors, Astronautica Acta 17: 1972.
  • 30. Sosounov V., Orlov V.: Experimental Turbofan Using Liquid Hydrogen and Liquid Natural Gas as Fuel. Proceedings of the AIAA—26th Joint Propulsion Conference, Orlando, FL, USA, 1990.
  • 31. Tobita A., Fujiwara T., Wolanski P.: Detonation Engine and Flying Object Provided therewith Publication Data: 2005-12-29; Japanese Patent No. 2004-191793 (granted 2009), Patent US 7784267 (granted 2010).
  • 32. Vasiliev A.A. Cell Size as the Main Geometric Parameter of a Multifront Detonation Wave. Journal of Propulsion and Power, 22(6): 2006.
  • 33. Verstraete D., Hendrick P., Pilidis P., Ramsden K.: Hydrogen fuel tanks for subsonic transport aircraft. International Journal of Hydrogen Energy, 35(20), 2010.
  • 34. Voitsekhovskii B.V., Mitrofanov V.V., Topchiyan M.E.: Structure of the Detonation Front in Gases.” Izdatielstvo SO AN SSSR. Novosibirsk (in Russian), 1963.
  • 35. Voitsekhovskii B.V.: Stationary spin detonation. Soviet Journal of Applied mechanics and Technical Physics, vol. 3, 1960.
  • 36. Voitsekhovskii B.V.: Statsionarnaya dyetonatsiya. Doklady Akademii Nauk SSSR, 129(6), 1959.
  • 37. Wolański P. (ed.): Research on detonative propulsion in Poland. Institute of Aviation Scientific Publication No. 60, Łukasiewicz Research Network – Institute of Aviation, Warsaw 2021.
  • 38. Wolański P., Balicki W., Perkowski W., Bilar A.: Experimental Research of Liquid Fueled Continuously Rotating Detonation Chamber. Shock Waves, 2021, DOI 10.1007/s00193-021-01014.
  • 39. Wolański P., Kalina P., Balicki W., Rowiński A., Perkowski A., Kawalec M., Łukasik B.: Development of gasturbine with detonation chamber. Detonation Control for Propulsion, Pulse Detonation and Rotating Detonation Engines, Springer: Cham, Switzerland, 2018, pp. 23-37.
  • 40. Wolański P., Kindracki J., Fujiwara T., Oka Y., Shima-uchi K.: An Experimental Study of Rotating Detonation Engine. In Proceedings of the 20th ICDERS, Minsk 2005.
  • 41. Wolanski P., Kindracki J., Fujiwara T.: An Experimental Study of Small Rotating Detonation Engine. Proceedings of the Fifth International Colloquium on Pulsed and Continuous Detonations, Moscow, Russia, July 3-7, 2006.
  • 42. Wolański P.: Alternatywne paliwa lotnicze do silników turbinowych. Technika Lotnicza i Astronautyczna, Nr 2, 1987.
  • 43. Wolański P.: Detonation Engines. Journal of KONES, Vol. 18 (2011), No.3 pp.515-521.
  • 44. Wolański P.: Detonative Propulsion. Proceedings of the Combustion Institute, 34, pp.125-158, Elsevier, 2013.
  • 45. Wolanski P.: Development of the continuous rotating detonation engines. In: Progress in Pulsed and Continuous Detonations, ed. by G.D. Roy and S.M. Frolov, Moscow, Torus Press, 2010.
  • 46. Wolański P.: RDE research and development in Poland. Shock Waves, 2021, DOI 10.1007/s00193-021-01038-2.
  • 47. Wolański P.: Rotating Detonation Wave Stability. In: Research on detonative propulsion in Poland, ed. Wolański P., pp. 71-92, Institute of Aviation Scientific Publication, Warsaw 2021.
  • 48. Yi T.-H., Lou J., Turangan C., Choi J.-Y., Wolanski P.: Propulsive performance of a continuously rotating detonation engine. Journal of Propulsion and Power, vol. 27, 2011.
  • 49. Yi T.H., Lou J., Wolanski P., Turangan C., Khoo B.C.: Effect of nozzle shapes on the performance of continuously rotating detonation engine. AIAA paper 2010-0152, 2010, DOI: 10.2514/6.2010-152.
  • 50. Yi T.-H., Turangan C., Lou J., Wolanski P., Kindracki J.: A three-dimensional numerical study of rotational detonation in an annular chamber. AIAA 2009-0634. 2009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90fb3030-2b00-4155-b38b-0d545c5a3f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.