Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Green’s function approach is applied for studying the exact and approximate null-controllability of a finite rod in finite time by means of a source moving along the rod with controllable trajectory. The intensity of the source remains constant. Applying the recently developed Green’s function approach, the analysis of the exact null-controllability is reduced to an infinite system of nonlinear constraints with respect to the control function. A sufficient condition for the approximate null-controllability of the rod is obtained. Since the exact solution of the system of constraints is a long-standing open problem, some heuristic solutions are used instead. The efficiency of these solutions is shown on particular cases of approximate controllability.
Czasopismo
Rocznik
Tom
Strony
417--430
Opis fizyczny
Bibliogr. 28 poz., rys., wzory
Twórcy
autor
- Faculty of Mathematics and Mechanics, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
autor
- Faculty of Mathematics and Mechanics, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
autor
- Dynamics of Deformable Systems and Coupled Fields, Institute of Mechanics, National Academy of Sciences of Armenia, 0019 Yerevan, Armenia
Bibliografia
- [1] J. Klamka: Controllability of Dynamical Systems. Kluwer Academic, Dordrecht, 1991.
- [2] S.A. Avdonin and S.A. Ivanov: Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York, 1995.
- [3] A. Fursikov and O.Yu. Imanuvilov: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
- [4] E. Zuazua: Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Differential Equations, vol. 3, Elsevier/North-Holland, Amsterdam, 2006.
- [5] R. Glowinski, J.-L. Lions and J. He: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Cambridge University Press, New York, 2008.
- [6] A.S. Avetisyan and As.Zh. Khurshudyan: Controllability of Dynamic Systems: The Green’s Function Approach. Cambridge Scholars Publishing, Cambridge, 2018.
- [7] S. Micu and E. Zuazua: On the lack of null-controllability of the heat equation on the half-line. Transactions of the American Mathematical Society, 353(4), (2001), 1635-1659.
- [8] S. Micu and E. Zuazua: Null Controllability of the Heat Equation in Unbounded Domains. In “Unsolved Problems in Mathematical Systems and Control Theory”, edited by Blondel V.D., Megretski A., Princeton University Press, Princeton, 2004.
- [9] V. Barbu: Exact null internal controllability for the heat equation on unbounded convex domain. ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 222-235, DOI: 10.1051/cocv/2013062.
- [10] As.Zh. Khurshudyan: (2019), Distributed controllability of heat equation in un-bounded domains: The Green’s function approach. Archives of Control Sciences, 29(1), (2019), 57-71, DOI: 10.24425/acs.2019.127523.
- [11] S. Ivanov and L. Pandolfi: Heat equation with memory: Lack of controllability to rest. Journal of Mathematical Analysis and Applications, 355 (2009), 1-11, DOI: 10.1016/j.jmaa.2009.01.008.
- [12] A. Halanay and L. Pandolfi: Approximate controllability and lack of controllability to zero of the heat equation with memory. Journal of Mathematical Analysis and Applications, 425 (2015), 194-211, DOI: 10.1016/j.jmaa.2014.12.021.
- [13] B.S. Yilbas: Laser Heating Applications: Analytical Modelling. Elsevier, Waltham, 2012.
- [14] A.G. Butkovskiy and L.M. Pustylnikov: Mobile Control of Distributed Parameter Systems. Chichester, Ellis Horwood, 1987.
- [15] V.A. Kubyshkin and V.I. Finyagina: Moving control of systems with distributed parameters (in Russian). Moscow: SINTEG, 2005.
- [16] Sh.Kh. Arakelyan and As.Zh. Khurshudyan: The Bubnov-Galerkin procedure for solving mobile control problems for systems with distributed parameters. Mechanics. PNAS Armenia, 68(3), (2015), 54-75.
- [17] A.G. Butkovskiy: Some problems of control of the distributed-parameter systems. Automation and Remote Control, 72 (2011), 1237-1241, DOI: 10.1134/S0005117911060105.
- [18] A.S. Avetisyan and As.Zh. Khurshudyan: Green’s function approach in approximate controllability problems. Proceedings of National Academy of Sciences of Armenia. Mechanics, vol. 69, issue 2, (2016), 3-22, DOI: 10.33018/69.2.1.
- [19] A.S. Avetisyan and As.Zh. Khurshudyan: Green’s function approach in approximate controllability of nonlinear physical processes. Modern Physics Letters A, 32 1730015, (2017), DOI: 10.1142/S0217732317300154.
- [20] As.Zh. Khurshudyan: Resolving controls for the exact and approximate controllabilities of the viscous Burgers’ equation: the Green’s function approach. International Journal of Modern Physics C, 29(6), 1850045, (2018), DOI: 10.1142/S0129183118500456.
- [21] A.S. Avetisyan and As.Zh. Khurshudyan: Exact and approximate controllability of nonlinear dynamic systems in infinite time: The Green’s function approach. ZAMM, 98(11), (2018), 1992-2009, DOI: 10.1002/zamm.201800122.
- [22] As.Zh. Khurshudyan: Exact and approximate controllability conditions for the micro-swimmers deflection governed by electric field on a plane: The Green’s function approach. Archives of Control Sciences, 28(3), (2018), 335-347. DOI: 10.24425/acs.2018.124706.
- [23] J. Klamka and As.Zh. Khurshudyan: Averaged controllability of heat equation in unbounded domains with uncertain geometry and location of controls: The Green’s function approach. Archives of Control Sciences, 29(4), (2019), 573-584, DOI: DOI: 10.24425/acs.2018.124706.
- [24] J. Klamka, A.S. Avetisyan and As.Zh. Khurshudyan: Exact and approximate distributed controllability of the KdV and Boussinesq equations: The Green’s function approach. Archives of Control Sciences, 30(1), (2020), 177-193, DOI: 10.24425/acs.2020.132591.
- [25] J. Klamka and As.Zh. Khurshudyan: Approximate controllability of second order infinite dimensional systems. Archives of Control Sciences, 31(1), (2021), 165-184, DOI: 0.24425/acs.2021.136885.
- [26] As.Zh. Khurshudyan: Heuristic determination of resolving controls for exact and approximate controllability of nonlinear dynamic systems. Mathematical Problems in Engineering, (2018), Article ID 9496371, DOI: 10.1155/2018/9496371.
- [27] H. Hossain and As.Zh. Khurshudyan: Heuristic control of nonlinear power systems: Application to the infinite bus problem. Archives of Control Sciences, 29(2), (2019), 279-288, DOI: 10.24425/acs.2019.129382.
- [28] A.G. Butkovskii and L.M. Pustyl’nikov: Characteristics of Distributed-Parameter Systems. Kluwer Academic Publishers, 1993.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90f946bc-114f-4bbc-9668-89aec5ca7767