Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Positive definite norm dependent matrices are of interest in stochastic modeling of distance/norm dependent phenomena in nature. An example is the application of geostatistics in geographic information systems or mathematical analysis of varied spatial data. Because the positive definiteness is a necessary condition for a matrix to be a valid correlation matrix, it is desirable to give a characterization of the family of the distance/norm dependent functions that form a valid (positive definite) correlation matrix. Thus, the main reason for writing this paper is to give an overview of characterizations of norm dependent real functions and consequently norm dependent matrices, since this information is somehow hidden in the theory of geometry of Banach spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
211--231
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Faculty of Electrical Engineering Mathematics and Computer Science, Delft University of Technology, the Netherlands
autor
- Department of Mathematics and Information Science, Warsaw Technical University, Warsaw, Poland
Bibliografia
- [1] R. Askey, Radial characteristic functions, Tech. Report No 1262 Math. Research Center, University of Wisconsin-Maddison, 1973.
- [2] P. Assouad, Analyses fonctionelle - une espace hypermetrique non plongeable dans un eapace L1, C. R. Acad. Sci. Paris 285 (1977), 361–363.
- [3] P. Assouad, Plongements isometriques dans L1; aspect analytique, initiation seminar on analysis, G. Choquet - M. Rogalski - J. Saint-Raymond 19th Year, Exp. No. 14, Publ. Math. Univ. Pierre et Marie Curie, 41, Univ. Paris VI, Paris 1980, 1980.
- [4] P. Assouad, Caracterizations des suous-espaces normes de L1 de dimension finie, Seminaire d’Analyse Fonctionelle, 1979–1980, preprint.
- [5] J. Bretagnolle, D. Dacunha-Castelle, J. L. Krivine, Lois stables et espaces Lp, in: Symp. on Probability Methods in Analysis, Lecture Notes in Math. 31, Springer, pp. 48–54, 1967.
- [6] S. Cambanis, R. Keener, G. Simons, On α-symmetric distributions, J. Multivariate Anal. 13 (1983), 213–233.
- [7] J. P. R. Christensen, P. Ressel, Norm dependent positive definite functions on B-spaces, Lecture Notes in Math. 990 (1983), 47–53.
- [8] N. Cressie, Statistics for Spatial Data, Wiley, New York, 1991.
- [9] F. Curriero, On the use of non-Euclidean distance measures in geostatistics, Math. Geol. 38(8) (2006), 907–926.
- [10] L. E. Dor, Potentials and isometric embeddings in L1, Israel J. Math. 24 (1976), 260–268.
- [11] T. S. Ferguson, A representation of the symmetric bivariate Cauchy distribution, Ann. Math. Statist. 33 (1962), 1256–1266.
- [12] R. Grząślewicz, J. K. Misiewicz, Isometric embeddings of subspaces of Lα-spaces and maximal representation for symmetric stable processes, Functional Analysis, Trier 1994, Eds.: Dierolf, Dineen, Domanski, Walter de Gruyter & Co., Berlin-New York, pp. 179–182, 1966.
- [13] I. Gradstein, I. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.
- [14] C. S. Herz, A class of negative definite functions, Proc. Amer. Math. Soc. 14 (1963), 670–676.
- [15] A. L. Koldobsky, Schoeberg’s problem on positive definite functions, Algebra and Analysis (Leningrad Math. J.) 3 (1991), 78–85.
- [16] J. Kuelbs, A representation theorem for symmetric stable processes and stable measures on H, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 26 (1973), 259–271.
- [17] P. Lévy, Théorie de l’Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937.
- [18] J. Lindenstrauss, On the extension of operators with finite dimensional range, Illinois J. Math. 8 (1964), 488–499.
- [19] A. D. Lisitsky, One more solution of the Schoenberg problem, preprint 1991.
- [20] J. K. Misiewicz, Positive definite functions on l8, Statist. Probab. Lett. 8 (1989), 255–260.
- [21] J. K. Misiewicz, Cz. Ryll-Nardzewski, Norm dependent positive definite functions and measures on vector spaces, In Probability Theory on Vector Spaces IV, Lancut 1987, pp. 284–292, Springer-Verlag LNM 1391, 1989.
- [22] J. K. Misiewicz, C. L. Scheffer, Pseudo-isotropic measures, Nieuw Arch. Wisk. 8(2) (1990), 111–152.
- [23] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811–841.
- [24] I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by change of metric and their imbedding in Hilbert spaces, Ann. of Math. 38 (1937), 787–793.
- [25] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522–536.
- [26] H. S. Witsenhausen, Metric inequalities and the zonoid problem, Proc. Amer. Math. Soc. 40 (1973), 517–520.
- [27] A. M. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random process, Theory Probab. Appl. 2(3) (1957), 273–320.
- [28] W. P. Zastawny, Positive definite norm-dependent functions. Solution of the Schoenberg problem, Dokl. Russian Akad. Nauk 325 (1991), 901–903.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90f4e01b-6046-4218-9690-d9395b80c57d