Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Schizophrenia is a brain disorder leading to detached mind's normally integrated processes. Hence, the exploration of the symptoms in relation to functional connectivity (FC) had great relevance in the field. Connectivity can be investigated on different levels, going from global features to single edges between pairs of regions, revealing diffuse and localized dysconnection patterns. In this context, schizophrenia is characterized by a different global integration with reduced connectivity in specific areas of the brain, part of the Default Mode Network (DMN). However, the assessment of FC presents various sources of uncertainty. This study proposes a multi-level approach for more robust group-comparison. FC data between 74 AAL brain areas of 15 healthy controls (HC) and 12 subjects with chronic schizophrenia (SZ) were used. Multi-level analyses were carried out by the previously published SPIDER-NET tool. Graph topological indexes were evaluated to assess global abnormalities. Robustness was augmented by bootstrapped (BOOT) data and the stability was evaluated by removing one (RST1) or two subjects (RST2). The DMN subgraph was extracted and specifically evaluated. Changes relevant to the overall local indexes were also analyzed. Finally, the connection weights were explored to enhance common strongest activations/deactivations. At a global level, expected trends of the indexes were found and the significance of modularity (p = 0.043) was not confirmed by BOOT (p = 0.133). The robustness assessment tests (both RST1 and RST2) highlighted more stable results for BOOT compared to the direct data testing. Conversely, significant results were found in the analysis at lower levels. The DMN highlighted reduced connectivity and strength as well as increased deactivation in the SZ group. At local level, 13 areas were found to be significantly different (p < 0.05) in the groups, highlighting a greater divergence in the frontal lobe. These results were confirmed analyzing the single negative edges, suggesting inverted connectivity between prefronto-temporal areas. In conclusion, multi-level analysis supported by BOOT is highly recommended when analyzing FC, especially when diffuse and localized dysconnections must be investigated in limited samples.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
171--198
Opis fizyczny
Bibliogr. 85 poz., rys., tab.
Twórcy
autor
- Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Italy
autor
- Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Italy
Bibliografia
- [1] Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. NeuroImage, 2011. 56(4):2068-2079. doi:10.1016/j.neuroimage.2011.03.069.
- [2] Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 2006.31(3):968-980. doi:10.1016/j.neuroimage.2006.01.021.
- [3] Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 2010. 53(1):1-15. doi:10.1016/j.neuroimage.2010.06.010.
- [4] Fornito A, Zalesky A, Bullmore ET. Fundamentals of Brain Network Analysis. Elsevier/ Academic Press, 2016. ISBN 9780124079083. doi:10.1016/B978-0-12-407908-3.09996-9.
- [5] Colon-Perez LM, Couret M, Triplett W, Price CC, Mareci TH. Small worldness in dense and weighted connectomes. Frontiers in Physics, 2016. 4(MAY):1-15. doi:10.3389/fphy.2016.00014.
- [6] Bassett DS, Sporns O. Network neuroscience. Nature Neuroscience, 2017. 20(3):353-364.doi:10.1038/nn.4502.
- [7] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: Identifying differences in brain networks. NeuroImage, 2010. 53(4):1197-1207. doi:10.1016/j.neuroimage.2010.06.041.
- [8] Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain, 2020.143(4):1233-1248. doi:10.1093/brain/awaa068.
- [9] Isernia S, Pirastru A, Massaro D, Rovaris M, Marchetti A, Baglio F. Resting-State Functional Brain Connectivity for Human Mentalizing: Biobehavioral Mechanisms of Theory of Mind in Multiple Sclerosis. Social Cognitive and Affective Neuroscience, 2021. doi:10.1093/scan/nsab120.
- [10] Bordier C, Nicolini C, Forcellini G, Bifone A. Disrupted modular organization of primary sensory brain areas in schizophrenia. NeuroImage: Clinical, 2018. 18:682-693. doi:10.1016/j.nicl.2018.02.035.
- [11] Coluzzi D, Bordin V, Rivolta MW, Fortel I, Zhang L, Leow A, Baselli G. Biomarker Investigation using Multiple Brain Measures from MRI through XAI in Alzheimer’s Disease Classification”arXiv preprint arXiv:2305.03056, 2023
- [12] Coluzzi D, Pirastru A, Pelizzari L, Cabinio M, Lagan`a MM, Baselli G, Baglio F. Development and Testing of SPIDER-NET: An Interactive Tool for Brain Connectogram Visualization, Sub-Network Exploration and Graph Metrics Quantification. Frontiers in Neuroscience, 2022. 16. URL https://www.frontiersin.org/article/10.3389/fnins.2022.818385.
- [13] Cheng B, Schlemm E, Schulz R, Boenstrup M, Mess´e A, Hilgetag C, Gerloff C, Thomalla G. Altered topology of large-scale structural brain networks in chronic stroke. Brain Communications, 2019. 1(1). doi:10.1093/braincomms/fcz020. URL https://doi.org/10.1093/braincomms/fcz020.
- [14] Daianu M, Dennis EL, Jahanshad N, Nir TM, Toga AW, Jack CR, Weiner MW, Thompson PM. Alzheimer’s disease disrupts rich club organization in brain connectivity networks. Proceedings - International Symposium on Biomedical Imaging, 2013. pp. 266-269. doi:10.1109/ISBI.2013.6556463.
- [15] Crofts JJ, Higham DJ, Bosnell R, Jbabdi S, Matthews PM, Behrens T, Johansen-Berg H. Network analysis detects changes in the contralesional hemisphere following stroke. NeuroImage, 2011. 54(1):161-169. doi:10.1016/j.neuroimage.2010.08.032.
- [16] Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and connectomics.NeuroImage, 2012. 62(4):2296-2314. doi:10.1016/j.neuroimage.2011.12.090.
- [17] Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T. Disrupted small-world networks in schizophrenia. Brain, 2008. 131(4):945-961. doi:10.1093/brain/awn018.
- [18] Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 2010. 4(October):1-16. doi:10.3389/fnsys.2010.00147.
- [19] Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E. Functional Connectivity and Brain Networks in Schizophrenia. Journal of Neuroscience, 2010.30(28):9477-9487. doi:10.1523/JNEUROSCI.0333-10.2010.
- [20] Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS. General and Specific Functional Connectivity Disturbances in First-Episode Schizophrenia During Cognitive Control Performance. Biological Psychiatry, 2011. 70(1):64-72. doi:10.1016/j.biopsych.2011.02.019.
- [21] Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, Pearlson G. Brain Connectivity Is Not Only Lower but Different in Schizophrenia: A Com-bined Anatomical and Functional Approach. Biological Psychiatry, 2010. 68(1):61-69. doi:10.1016/j.biopsych.2010.03.035.
- [22] Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, He Y, Chen XG, Tang JS. A Review of the Functional and Anatomical Default Mode Network in Schizophrenia. Neuroscience Bulletin, 2017. 33(1):73-84. doi:10.1007/s12264-016-0090-1.
- [23] Godwin D, Ji A, Kandala S, Mamah D. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task. Frontiers in Psychiatry, 2017. 8. doi:10.3389/fpsyt.2017.00294.
- [24] Zhou Y, Zeidman P, Wu S, Razi A, Chen C, Yang L, Zou J, Wang G, Wang H, Friston KJ. Altered intrinsic and extrinsic connectivity in schizophrenia. NeuroImage: Clinical, 2018. 17:704-716. doi:10.1016/j.nicl.2017.12.006.
- [25] Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C. Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 2013. 80:360-378. doi:10.1016/j.neuroimage.2013.05.079.
- [26] Kottaram A, Johnston LA, Cocchi L, Ganella EP, Everall I, Pantelis C, Kotagiri R, Zalesky A. Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network. Human Brain Mapping, 2019. 40(7):2212-2228. doi:10.1002/hbm.24519.
- [27] Liégeois R, Laumann TO, Snyder AZ, Zhou J, Yeo BTT. Interpreting temporal fluctuations in resting-state functional connectivity MRI. NeuroImage, 2017. 163:437-455. doi:10.1016/j.neuroimage.2017.09.012.
- [28] Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, Deco G. Cansliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage, 2016. 127:242-256. doi:10.1016/j.neuroimage.2015.11.055.
- [29] Leonardi N, Van De Ville D. On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage, 2015. 104:430-436. doi:10.1016/j.neuroimage.2014.09.007.
- [30] Lindquist MA, Xu Y, Nebel MB, Caffo BS. Evaluating dynamic bivariate correlations in restingstate fMRI: A comparison study and a new approach. NeuroImage, 2014. 101:531-546. doi:10.1016/j.neuroimage.2014.06.052.
- [31] Zalesky A, Breakspear M. Towards a statistical test for functional connectivity dynamics. NeuroImage, 2015. 114:466-470. doi:10.1016/j.neuroimage.2015.03.047.
- [32] Lazar M, Alexander AL. Bootstrap white matter tractography (BOOT-TRAC). NeuroImage, 2005. 24(2):524-532. doi:10.1016/j.neuroimage.2004.08.050.
- [33] Kulesa A, Krzywinski M, Blainey P, Altman N. Sampling distributions and the bootstrap. Nature methods, 2015. 12(6):477-478.
- [34] Gel YR, Lyubchich V, Ramirez Ramirez LL. Bootstrap quantification of estimation uncertainties in network degree distributions. Scientific Reports, 2017. 7(1):5807. doi:10.1038/s41598-017-05885-x.
- [35] Green A, Shalizi CR. Bootstrapping exchangeable random graphs. Electronic Journal of Statistics, 2022. 16(1):1058-1095. doi:10.1214/21-EJS1896.
- [36] Picheny V, Kim NH, Haftka RT. Application of bootstrap method in conservative estimation of reliability with limited samples. Structural and Multidisciplinary Optimization, 2010.41(2):205-217. doi:10.1007/s00158-009-0419-8.
- [37] Wei L, Jing B, Li H. Bootstrapping promotes the RSFC-behavior associations: An application of individual cognitive traits prediction. Human Brain Mapping, 2020. 41(9):2302-2316. doi:10.1002/hbm.24947.
- [38] Berman BD, Smucny J, Wylie KP, Shelton E, Kronberg E, Leehey M, Tregellas JR. Levodopa modulates small-world architecture of functional brain networks in Parkinson’s disease. Movement Disorders, 2016. 31(11):1676-1684. doi:10.1002/mds.26713.
- [39] van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BTT, Schmidt R. Propor-tional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. NeuroImage, 2017. 152:437-449. doi:10.1016/j.neuroimage.2017.02.005.
- [40] Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia. Neuroscience & Biobehavioral Reviews, 2016. 61:108-120. doi:10.1016/j.neubiorev.2015.12.007.
- [41] Newman ME. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 2006. 103(23):8577-8582. doi:10.1073/pnas.0601602103.
- [42] Efron B, Tibshirani R. An introduction to the bootstrap. Monographs on statistics and applied probability. Chapman & Hall, New York, 1993. ISBN 978-0-412-04231-7.
- [43] Johnston MG, Faulkner C. A bootstrap approach is a superior statistical method for the comparison of non-normal data with differing variances. New Phytologist, 2021. 230(1):23-26. doi:10.1111/nph.17159.
- [44] Mevel K, Chételat G, Eustache F, Desgranges B. The Default Mode Network in Healthy Aging and Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2011. 2011:535816. doi:10.4061/2011/535816.
- [45] Li W, Mai X, Liu C. The default mode network and social understanding of others: what do brain connectivity studies tell us. Frontiers in Human Neuroscience, 2014. 8. URL https://www.frontiersin.org/articles/10.3389/fnhum.2014.00074.
- [46] Manning KJ, Steffens DC. Systems Neuroscience in Late-Life Depression. In: Systems Neuroscience in Depression, pp. 325-340. Academic Press, San Diego. ISBN 978-0-12-802456-0, 2016. URL https://www.sciencedirect.com/science/article/pii/B978012802456000011X.
- [47] Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, Thiebaut de Schotten M. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Communications Biology, 2019. 2(1):1-14. doi:10.1038/s42003-019-0611-3.
- [48] van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 2010. 20(8):519-534. doi: 10.1016/j.euroneuro.2010.03.008.
- [49] Finotelli P, Dipasquale O, Costantini I, Pini A, Baglio F. . . Exploring resting-state functional connectivity invariants across the lifespan in healthy people by means of a recently proposed graph theoretical model. - PLoS One, 2018. doi:10.1371/journal.pone.0206567.
- [50] Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 2010. 52(3):1059-1069. doi:10.1016/j.neuroimage.2009.10.003.
- [51] Blasi V, Pirastru A, Cabinio M, Di Tella S, Lagaa MM, Giangiacomo A, Baglio G, Zanette M, Canevini MP, Walder M, Clerici M, Baglio F. Early Life Adversities and Borderline Intellectual Functioning Negatively Impact Limbic System Connectivity in Childhood: A Connectomics-Based Study. Frontiers in Psychiatry, 2020. 11. doi:10.3389/fpsyt.2020.497116. URL https://www.frontiersin.org/articles/10.3389/fpsyt.2020.497116/full.
- [52] Bassett DS, Bullmore ET. Small-World Brain Networks Revisited. The Neuroscientist, 2017. 23(5):499-516. doi:10.1177/1073858416667720. Publisher: SAGE Publications Inc STM.
- [53] Oliver I, Hlinka J, Kopal J, Davidsen J. Quantifying the Variability in Resting-State Networks. Entropy, 2019. 21(9):882. doi:10.3390/e21090882. Number: 9 publisher: Multidisciplinary Digital Publishing Institute.
- [54] Avery SN, Rogers BP, Heckers S. Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018. 3(5):423-432. doi:10.1016/j.bpsc.2018.02.001.
- [55] van den Berg D, Gong P, Breakspear M, van Leeuwen C. Fragmentation: loss of global coherence or breakdown of modularity in functional brain architecture? Frontiers in Systems Neuroscience, 2012. 6. URL https://www.frontiersin.org/articles/10.3389/fnsys.2012.00020.
- [56] van den Heuvel MP, Fornito A. Brain Networks in Schizophrenia. Neuropsychology Review, 2014. 24(1):32-48. doi:10.1007/s11065-014-9248-7.
- [57] Yu Q, Sui J, Rachakonda S, He H, Gruner W, Pearlson G, Kiehl KA, Calhoun VD. Al-tered Topological Properties of Functional Network Connectivity in Schizophrenia during Resting State: A Small-World Brain Network Study. PLOS ONE, 2011. 6(9):e25423. doi:10.1371/journal.pone.0025423. Public Library of Science.
- [58] Wang L, Metzak PD, Honer WG, Woodward TS. Impaired Efficiency of Functional Networks Underlying Episodic Memory-for-Context in Schizophrenia. Journal of Neuroscience, 2010.30(39):13171-13179. doi:10.1523/JNEUROSCI.3514-10.2010.
- [59] Sun Y, Collinson SL, Suckling J, Sim K. Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia. Schizophrenia Bulletin, 2019.45(3):659-669. doi:10.1093/schbul/sby077.[60] Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences, 2014. 111(28):10341-10346. doi:10.1073/pnas.1400181111.
- [61] Unschuld PG, Buchholz AS, Varvaris M, van Zijl PCM, Ross CA, Pekar JJ, Hock C, Sweeney JA, Tamminga CA, Keshavan MS, Pearlson GD, Thaker GK, Schretlen DJ. Prefrontal Brain Network Connectivity Indicates Degree of Both Schizophrenia Risk and Cognitive Dysfunction. Schizophrenia Bulletin, 2014. 40(3):653-664. doi:10.1093/schbul/sbt077.
- [62] Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin S, Preda A, et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 2014. 5:298-308. doi:10.1016/j.nicl.2014.07.003.
- [63] Civier O, Smith RE, Yeh CH, Connelly A, Calamante F. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? NeuroImage, 2019. 194:68-81. doi:10.1016/j.neuroimage.2019.02.039.
- [64] Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the Structural Core of Human Cerebral Cortex. PLOS Biology, 2008. 6(7):e159. doi:10.1371/journal.pbio.0060159.
- [65] Tewarie P, van Dellen E, Hillebrand A, Stam CJ. The minimum spanning tree: An unbiased method for brain network analysis. NeuroImage, 2015. 104:177-188. doi:10.1016/j.neuroimage. 2014.10.015.
- [66] Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO. Altered resting state complexity in schizophrenia. NeuroImage, 2012. 59(3):2196-2207. doi:10.1016/j.neuroimage.2011.10.002.[67] Hemsley DR. Perceptual and Cognitive Abnormalities as the Bases for Schizophrenic Symptoms. In: The Neuropsychology Of Schizophrenia. Psychology Press. ISBN 978-1-315-78500-4, 2019. Number-of-pages: 20.
- [68] Tomasi D, Volkow ND. Association between Functional Connectivity Hubs and Brain Networks. Cerebral Cortex, 2011. 21(9):2003–2013. doi:10.1093/cercor/bhq268.
- [69] Jeong B, Wible CG, Hashimoto RI, Kubicki M. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia. Human Brain Mapping, 2009. 30(12):4138-4151. doi:10.1002/hbm.20835.
- [70] Sormaz M, Murphy C, Wang Ht, Hymers M, Karapanagiotidis T, Poerio G, Margulies DS, Jefferies E, Smallwood J. Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences of the United States of America, 2018. 115(37):9318-9323. doi:10.1073/pnas.1721259115.
- [71] Shinn AK, Baker JT, Cohen BM, Özgür D. Functional connectivity of left Heschl’s gyrus in vulnerability to auditory hallucinations in schizophrenia. Schizophrenia Research, 2013.143(2):260-268. doi:10.1016/j.schres.2012.11.037.
- [72] Koshiyama D, Miyakoshi M, Tanaka-Koshiyama K, Joshi YB, Molina JL, Sprock J, Braff DL, Light GA. Neurophysiologic Characterization of Resting State Connectivity Abnormalities in Schizophrenia Patients. Frontiers in Psychiatry, 2020. 11. URL https://www.frontiersin.org/articles/10.3389/fpsyt.2020.608154.
- [73] Peskin N, Koren D, Gabay S. Subcortical neural tracks play an important role in executive function in schizophrenia: An experimental study among patients with schizophrenia and healthy comparisons. Schizophrenia Research: Cognition, 2020. 22:100185. doi:10.1016/j.scog.2020.100185.
- [74] Beech A, Powell T, McWilliam J, Claridge G. Evidence of reduced ‘cognitive inhibition’ in schizophrenia. British Journal of Clinical Psychology, 1989. 28(2):109-116. doi:10.1111/j.2044-8260.1989.tb00821.x.
- [75] Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms. Journal of Psychiatric Research, 2010. 44(6):364-372. doi:10.1016/j.jpsychires.2009.09.003.
- [76] Fujimoto T, Okumura E, Takeuchi K, Kodabashi A, Otsubo T, Nakamura K, Kamiya S, Higashi Y, Yuji T, Honda K, Shimooki S, Tamura T. Dysfunctional Cortical Connectivity During the Auditory Oddball Task in Patients with Schizophrenia. The Open Neuroimaging Journal, 2013.7:15-26. doi:10.2174/1874440001307010015.
- [77] Yildiz M, Borgwardt SJ, Berger GE. Parietal Lobes in Schizophrenia: Do They Matter? Schizophrenia Research and Treatment, 2011. 2011:e581686. doi:10.1155/2011/581686.
- [78] Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in schizophrenia: Where are we now? Neuroscience & Biobehavioral Reviews, 2011. 35(5):1110-1124. doi:10.1016/j.neubiorev.2010.11.004.
- [79] Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 2005. 102(27):9673-9678. doi:10.1073/pnas.0504136102.
- [80] Fransson P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 2005. 26(1):15-29. doi:10.1002/hbm.20113.
- [81] Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 2007. 97(1):194-205. doi:10.1016/j.schres.2007.05.029.
- [82] Segal D, Haznedar MM, Hazlett EA, Entis JJ, Newmark RE, Torosjan Y, Schneiderman JS, Friedman J, Chu KW, Tang CY, Buchsbaum MS, Hof PR. Diffusion tensor anisotropy in the cingulate gyrus in schizophrenia. NeuroImage, 2010. 50(2):357-365. doi:10.1016/j.neuroimage.2009.12.071.
- [83] Bordier C, Nicolini C, Bifone A. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold. Frontiers in Neuroscience, 2017.11. doi:10.3389/fnins.2017.00441. URL https://www.frontiersin.org/articles/10.3389/fnins.2017.00441/full.
- [84] Nicolini C, Bordier C, Bifone A. Community detection in weighted brain connectivity networks beyond the resolution limit. NeuroImage, 2017. 146:28-39. doi:10.1016/j.neuroimage.2016.11.026.
- [85] Guo S, Chen X, Liu Y, Kang R, Liu T, Li D. Percolation Analysis of Brain Structural Network. Frontiers in Physics, 2021. 9. URL https://www.frontiersin.org/articles/10.3389/fphy.2021.698077.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90e9dc0b-e9a4-42dd-b094-bfffeeab676a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.