PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing the suitability of dim sedimentary quartz from northern Switzerland for OSL burial dose estimation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the suitability of sedimentary quartz associated with former glacial advances in northern Switzerland to provide reliable burial dose estimates using Optically Stimulated Luminescence (OSL). Previous studies on northern alpine quartz show that its signal characteristics can be poor and potentially problematic. We analyse quartz signals of small aliquots, which reveal the presence of a prominent medium or slow component in the initial part of some signals. Nonetheless, rejection of aliquots with unfavourable signal composition does not alter the burial dose estimates, but significantly reduces the data set for De determination. Signal lifetimes from isothermal decay measurements cover a wide range of values, yet the lowest lifetimes are high enough to guarantee a reliable burial dose estimate for samples of < 400 ka. Comparison of small aliquot and single grain burial dose distributions reveals that signal averaging masks partial bleaching in some of the samples. We therefore strongly recommend single grain measurements for samples from this setting and area, in order to exclude age overestimation due to partial bleaching.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
66--76
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
  • Institute of Geography, University of Berne, Hallerstrasse 12, 3012 Bern, Switzerland
autor
  • Institute of Geological Sciences and the Oeschger Centre for Climate Research, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
autor
  • Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
autor
  • Institute of Geography, University of Berne, Hallerstrasse 12, 3012 Bern, Switzerland
Bibliografia
  • 1. Aitken, M. J., 1998. An Introduction to Optical Dating. 279 pp. Oxford University Press, Oxford.
  • 2. Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25(19–20): 2475– 2502, DOI 10.1016/j.quascirev.2005.09.012.
  • 3. Bailey RM, Smith BW and Rhodes EJ, 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27: 123–136, DOI 10.1016/S1350-4487(96)00157-6.
  • 4. Bailey RM, 2003. Paper I: the use of measurement-time dependent single-aliquot equivalent-dose estimates from quartz in the identification of incomplete signal resetting. Radiation Measurements 37: 673–683, DOI 10.1016/S1350-4487(03)00078-7.
  • 5. Bailey RM, 2010. Direct measurement of the fast component of quartz optically stimulated luminescence and implications for the accuracy of optical dating. Quaternary Geochronology 5: 559–568, DOI 10.1016/j.quageo.2009.10.003.
  • 6. Ballarini M, Wallinga J, Wintle AG and Bos AJJ, 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42: 360–369, DOI 10.1016/j.radmeas.2006.12.016.
  • 7. Ballarini M, Wintle AG and Wallinga J, 2006. Spatial variation of dose rate from beta sources as measured using single grains. Ancient TL 24: 1–8.
  • 8. Bickel L, Luthgens C, Lomax J and Fiebig M, 2015. Luminescence dating of glaciofluvial deposits linked to the penultimate glaciation in the Eastern Alps. Quaternary International 357: 110–124, DOI 10.1016/j.quaint.2014.10.013.
  • 9. Bøtter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535– 541, DOI 10.1016/S1350-4487(03)00020-9.
  • 10. Buechi MW, Lowick SE and Anselmetti FS, 2017. Luminescence dating of glaciolacustrine silt in overdeepened basin fills beyond the last interglacial. Quaternary Geochronology 37: 55–67, DOI 10.1016/j.quageo.2016.09.009.
  • 11. Bulur E, 2000. A simple transformation for converting CW-OSL curves to LM-OSL curves. Radiation Measurements 32: 141–145, DOI 10.1016/S1350-4487(99)00247-4.
  • 12. Cunningham AC and Wallinga J, 2010. Selection of integration timeintervals for quartz OSL decay curves. Quaternary Geochronology 5: 657–666, DOI 10.1016/j.quageo.2010.08.004.
  • 13. Duller GAT, 2006. Single grain optical dating of glacigenic deposits. Quaternary Geochronology 1: 296–304, DOI 10.1016/j.quageo.2006.05.018.
  • 14. Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sand-sized grains of quartz: sources of variability. Radiation Measurements 32: 453–457, DOI 10.1016/S1350-4487(00)00055-X.
  • 15. Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161– 165, DOI 10.1016/S1350-4487(02)00170-1.
  • 16. Duller GAT, 2012. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiation Measurements 47: 770– 777, DOI 10.1016/j.radmeas.2012.01.006.
  • 17. Durcan JA, 2012. Luminescence dating of sediments in Punjab, Pakistan: implications for the collapse of the Harappan Civilisation. Abberystwyth University, UK.
  • 18. Durcan JA and Duller GAT, 2011. The fast ratio: a rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiation Measurements 46: 1065–1072, DOI 10.1016/j.radmeas.2011.07.016.
  • 19. Feathers J, 2015. Luminescence dating at Diepkloof Rock Shelter – new dates from single-grain quartz. Journal of Archaeological Science 63: 164–174, DOI 10.1016/j.jas.2015.02.012.
  • 20. Fu X, Li S-H and Li B, 2015. Optical dating of aeolian and fluvial sediments in north Tian Shan range, China: Luminescence characteristics and methodological aspects. Quaternary Geochronology 30: 161–167, DOI 10.1016/j.quageo.2015.03.001.
  • 21. Fuchs M and Owen LA, 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37: 636–659, DOI 10.1111/j.1502- 3885.2008.00052.x.
  • 22. Gaar D, Lowick SE and Preusser F, 2014. Performance of different luminescence approaches for the dating of known-age glaciofluvial deposits from northern Switzerland. Geochronometria 41: 65–80, DOI 10.2478/s13386-013-0139-0.
  • 23. Gaar D and Preusser F, 2012. Luminescence dating of mammoth remains from northern Switzerland. Quaternary Geochronology 10: 257–263, DOI 10.1016/j.quageo.2012.02.007.
  • 24. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part I. Experimental design and statistical models. Archaeometry 41: 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
  • 25. Godfrey-Smith D, Huntley D and Chen W, 1988. Optical dating studies of quartz and feldspar sediment extracts. Quaternary Science Reviews 7: 373–380, DOI 10.1016/0277-3791(88)90032-7.
  • 26. Jacobs Z, Hayes EH, Roberts RG, Galbraith RF and Henshilwood CS, 2013. An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. Journal of Archaeological Science 40(1): 579–594, DOI 10.1016/j.jas.2012.06.037.
  • 27. Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of bluelight stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37: 441–449, DOI 10.1016/S1350-4487(03)00052-0.
  • 28. Klasen N, Fiebig M, Preusser F, Reitner JM and Radtke U, 2007. Luminescence dating of proglacial sediments from the Eastern Alps. Quaternary International 164–165: 21–32, DOI 10.1016/j.quaint.2006.12.003.
  • 29. Klasen N, 2008. Lumineszenzdatierung glazifluvialer Sedimente im nördlichen Alpenvorland (“Luminescence dating of glaciofluvial sediments in the Northern Alpine Foreland”). University of Cologne: 210 pp. (in German).
  • 30. Klasen N, Fiebig M and Preusser F, 2016. Applying luminescence methodology to key sites of Alpine glaciations in Southern Germany. Quaternary International 420: 249–258, DOI 10.1016/j.quaint.2015.11.023.
  • 31. Li B and Li S-H, 2006. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiation Measurements 41: 125–136, DOI 10.1016/j.radmeas.2005.06.037.
  • 32. Lowick SE, Buechi MW, Gaar D, Graf HF and Preusser F, 2015. Luminescence dating of Middle Pleistocene proglacial deposits from northern Switzerland: methodological aspects and stratigraphical conclusions. Boreas 44: 459–482, DOI 10.1111/bor.12114.
  • 33. McKeever SWS and Chen R, 1997. Luminescence models. Radiation Measurements 27: 625–661, DOI 10.1016/S1350-4487(97)00203-5.
  • 34. Moska P and Murray AS, 2006. Stability of the quartz fast-component in insensitive samples. Radiation Measurements 41(7): 878–885, DOI 10.1016/j.radmeas.2006.06.005.
  • 35. Murray AS and Wintle AG, 1999. Isothermal decay of optically stimulated luminescence in quartz. Radiation Measurements 30: 119– 125, DOI 10.1016/S1350-4487(98)00097-3.
  • 36. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 37. Murray AS, Thomsen KJ, Masuda N, Buylaert JP and Jain M, 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47: 688–695, DOI 10.1016/j.radmeas.2012.05.006.
  • 38. Olley JM, Pietsch T and Roberts RG, 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60: 337–358, DOI 10.1016/j.geomorph.2003.09.020.
  • 39. Pietsch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3: 365–376, DOI 10.1016/j.quageo.2007.12.005.
  • 40. Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41: 871–877, DOI 10.1016/j.radmeas.2006.04.019.
  • 41. Preusser F, Blei A, Graf H and Schlüchter C, 2007. Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36: 130–142, DOI 10.1080/03009480600923378.
  • 42. Rades EF, Fiebig M and Lüthgens C, in press. Luminescence dating of the Rissian type section in southern Germany as a base for correlation. Quaternary International.
  • 43. Salcher BC, Starnberger R and Götz J, 2015. The last and penultimate glaciation in the North Alpine Foreland: New stratigraphical and chronological data from the Salzach glacier. Quaternary International 388: 218–231, DOI 10.1016/j.quaint.2015.09.076.
  • 44. Schielein P, Schellmann G, Lomax J, Preusser F and Fiebig M, 2015. Chronostratigraphy of the Hochterrassen in the lower Lech valley (Northern Alpine Foreland). E&G 64: 15–28.
  • 45. Smith BW and Rhodes EJ, 1994. Charge movements in quartz and their relevance to optical dating. Radiation Measurements 23: 581–585, DOI 10.1016/1350-4487(94)90060-4.
  • 46. Spencer J and Owen L, 2004. Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods. Quaternary Science Reviews 23: 175–191, DOI 10.1016/S0277-3791(03)00220-8.
  • 47. Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4: 353–362, DOI 10.1016/j.quageo.2009.05.015.
  • 48. Thomsen KJ, Murray AS and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39: 47–61, DOI 10.1016/j.radmeas.2004.01.039.
  • 49. Thomsen KJ, Murray AS and Jain M, 2012. The dose dependency of the overdispersion of quartz OSL single grain dose distributions. Radiation Measurements 47: 732–739, DOI 10.1016/j.radmeas.2012.02.015.
  • 50. Thomsen KJ, Kook M, Murray AS, Jain M and Lapp T, 2015. Singlegrain results from an EMCCD-based imaging system. Radiation Measurements 81: 185–191. DOI 10.1016/j.radmeas.2015.02.015.
  • 51. Wallinga J, 2002. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21: 17–26.
  • 52. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90e8e808-e0b3-4d14-a1d5-e2cf43aac19d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.