PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved stress-dependent model for magnetomechanical effect simulation of Terfenol-D rods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ulepszony model matematyczny opisujący efekt magnetostrykcyjny Terfenolu-D
Języki publikacji
EN
Abstrakty
EN
Terfenol-D is one of the smart materials widely used in the fabrication of magnetostriction based sensors and actuators due to its high material properties. However, using Terfenol-D in industrial applications rely on the ability of predicting its hysteresis by mathematical models. In this paper, we present an improved hysteresis model for reproducing hysteresis curves of Terfenol-D. Levenberg–Marquardt algorithm is used to estimate the optimal parameters of the improved model. The simulation and experimental results show the performances of the proposed model.
Artykuł zajmuje się Terfenolem-D – dość powszechnie stosowanym materiałem magnetostrykcyjnym. Niestety dotychczas brakowało matematycznego modelu tego materiału uwzględniającego histerezę. Wykorzystano algorytm Levenberg–Marquardt do bardziej szczegółowego opisu parametrów Terfenolu.
Rocznik
Strony
115--120
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Faculty of Electrical and Computer Engineering, Mouloud Mammeri University of Tizi-Ouzou, BP 17RP 15000, Algeria
  • Faculty of Electrical and Computer Engineering, Mouloud Mammeri University of Tizi-Ouzou, BP 17RP 15000, Algeria
  • Grenoble Electrical Engineering Laboratory (G2Elab), Bâtiment GreEn-ER, 21 avenue des martyrs, CS 90624 38031 Grenoble CEDEX 1 FRANCE
Bibliografia
  • [1] Zheng J., Cao S and Wang H., Modeling of Magnetomechanical Effect Behaviors in a Giant Magnetostrictive Device under Compressive Stress, Sensors and Actuators A.,143 (2008), 204-214
  • [2] Stachowiak D., The Influence of Magnetic Bias and Prestress on Magnetostriction Characteristics of a Giant Magnetostrictive Actuator, Przegląd Elektrotechniczny., 89 (2013), No. 4, 233- 236
  • [3] Lopez J.D., Dante A., Cremonezi A.O., Ferreira E.C., Salles B.R and Gomes A.M., A Fiber-optic Current Sensor Based on FBG and Terfenol-D with Magnetic Flux Density Concentration, In Proceedings of the IEEE Sensors., 20 (2019), 1-4
  • [4] Meng A., Zhu J., Kong M., and He H., Modeling of Terfenol-D Biased Minor Hysteresis Loops, IEEE Trans. Magn., 49 (2013), No. 1, 552–557
  • [5] Jackiewicz D., Juś A., Szewczyk R and Bieńkowski A., Two Methods of Magnetoelastic Effect Utilization to Evaluate Mechanical Strain in the Truss Structures, Przegląd Elektrotechniczny., 93 (2017) No. 7, 31-33
  • [6] Valadkhan S., Morris K and Shum A., A New Load-dependent Hysteresis Model for Magnetostrictive Materials, Smart Mater. Struct., 19 (2010), 1-10
  • [7] Perevertov O., Influence of the Residual Stress on the Magnetization Process in Mild Steel, J. Phys. D: Appl. Phys., 40 (2007) 949–954
  • [8] Kuczmann M., Measurement and Simulation of Vector Hysteresis, Przegląd Elektrotechniczny (Electrical Review)., 87 (2011), No. 3, 103-106
  • [9] Janaideh M.A., Naldi R, Marconi L., and Krejčí P., A Hybrid Model for the Play Hysteresis Operator, Phys. B., 430 (2013), 95-98
  • [10] Minorowicz B., Nowak A and Stefanski F., Hysteresis Modelling in Electromechanical Transducer with Magnetic Shape Memory Alloy, Przegląd Elektrotechniczny., 90 (2014), No. 11, 244-247
  • [11] Jiles D.C., Thoelke J.B., and Devine M.K., Numerical etermination of Hysteresis Parameters for the Modeling of Magnetic Properties Using the Theory of Ferromagnetic Hysteresis, IEEE Trans. On Magn., 281 (1992), No. 1, 27-35
  • [12] Li, Y., Huang, W., Wang, B., and Weng, L.. High-Frequency Output Characteristics of Giant Magnetostrictive Transducer, IEEE Trans. Magn., 55 (2019), No. 6, 1-5
  • [13] Talebian S., Hojjat Y., Ghodsi M., Karafi M.R., and Mirzamohammadi S., A Combined Preisach–Hyperbolic Tangent Model for Magnetic Hysteresis of Terfenol-D, Journal of Magnetism and Magnetic Materials., 396 (2015), 38-47
  • [14] Preisach F., Z. Phys., 94 (1835), 277-302
  • [15] Jesenik M., Goričan V., Hamler A., Štumberger B., Trlep M., Numerical Scalar Hysteresis Model and its Precision, Przegląd Elektrotechniczny., 87 (2011), No. 3, 85-88
  • [16] Adly A.A., Mayergoyz I.D., and Bergqvist A., Preisach Modeling of Magnetostrictive Hysteresis, Journal of Applied Physics, 69 (1991), 5777-5779
  • [17] Smith R.C., and Dapino M.J., A Homogenized Energy Model for the Direct Magnetomechanical Effect, IEEE Trans. Magn., 42 (2006) No. 8, 1944-1957
  • [18] Smith R. C., Dapino M.J and Seelecke S., Free Energy Model for Hysteresis in Magnetostrictive Transducers, Journal of Applied Physics., 93 (2003), 458–466
  • [19] Jiles D.C., and Atherton D.L., Theory of Ferromagnetic Hysteresis, Journal of Magnetism and Magnetic Materials., 61 (1986), 48-60
  • [20] Dapino M.J., Smith R.C., Flatau A.B., Structural Magnetic Strain for Magnetostrictive Transducers, IEEE Trans. Magn., 36 (2000), No. 3, 545-556
  • [21] Perevertov O and Schäfer R., Influence of Applied Compressive Stress on the Hysteresis Curves and Magnetic Domain Structure of Grain-oriented Transverse Fe–3%Si Steel, Journal of Physics D: Applied Physics., 45 (2012), 1-10
  • [22] Rasilo P., Singh D., Belahcen A and Arkkio A., Iron Losses Magneto-elasticity and Magnetostriction in Ferromagnetic Steel Laminations, IEEE Trans. Magn., 49 (2013), 2041 -2044
  • [23] Zheng J., Cao S., Wang H and Huang W., Hybrid Genetic Algorithms for Parameter Identification of a Hysteresis Model of Magnetostrictive Actuators, Neurocomputing., 70 (2007), 749- 761
  • [24] Liu R and Li L., Simulated Annealing Algorithm Coupled With a Deterministic Method for Parameter Extraction of Energetic Hysteresis Model. IEEE Trans. Magn., 54 (2018), No.11, 1-5
  • [25] Azoum K., Besbes M., Bouillault F and Ueno, T., Modeling of Magnetostrictive Phenomena. Application in Magnetic Force Control, The European Physical Journal Applied Physics, 36 (2006), 43-47
  • [26] Benbouzid M.E.H., Reyne G and Meunier G., A 2D Dynamic Formulation For Nonlinear Finite Element Modelling of Terfenol-D Rods, Second International Conference on Computation in Electromagnetics., (1994), 52-55
  • [27] Stachowiak D., Finite Element Analysis of the Active Element Displacement in a Giant Magnetostrictive Transducer, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering., 35 (2016), 1371-1381
  • [28] Ueno T., Qiu J., and Tani J., Magnetic Force Control Based on the Inverse Magnetostrictive Effect. IEEE Trans. Magn., 40 (2004), No. 3, 1601-1605
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90e611ab-d148-4191-8190-165a463a0987
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.