PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction control systems in marine applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents one of the modern control methods used for steering of the ship motion. The different automatic systems used to navigate the vessels are described at the beginning. Next, prediction control methodology is presented and multidimensional MPC regulator applied to steering of the training ship is shown as a technical product. Tests results from the real-time experiments with the mentioned controller are presented at the end of the article.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. Bowman, M. L. 2009. Navy tactics, techniques and procedures underway replenishment. NTTP 4-01.4 Tech, Rep. Departament of the Navy Office of the Chief of Naval Operations
  • 2. Camacho, E. F., & Alba, C. B. 2013. Model predictive control. Springer Science & Business Media.
  • 3. Clarke, D. W., Mohtadi, C., & Tuffs, P. S. 1987. Generalized predictive control—Part I. The basic algorithm. Automatica 23(2): 137-148.
  • 4. Fossen, T. I. 2002. Marine Control Systems. Marine Cybernetics. Trondheim Norway.
  • 5. Fossen, T. I. 2011. Marine Craft Hydrodynamics and Motion Control. J. Wiley & Sons Ltd.
  • 6. Gierusz, W., Vinh, N. C. & Rak, A., 2007, Maneuvering control and trajectory tracking of very large crude carrier. Ocean Engineering 34: 932-945.
  • 7. Gierusz, W. 2015. Simulation model of the LNG carrier with podded propulsion Part 1: Forces generated by pods. Ocean Engineering 108: 105-114.
  • 8. Gierusz, W. 2016. Simulation model of the LNG carrier with podded propulsion Part 2: Full model and experimental results. Ocean Engineering 123: pp. 28-44
  • 9. Hals, T. Tandem Loading and Drilling Operations Under Changing Environmental Conditions. Dynamic Positioning Conference, Houston, USA, 09, 2004.
  • 10. Holkar, K. & Waghmare, L. 2010. An overview of model predictive control. International Journal of Control and Automation 3(4): 47-63.
  • 11. Horiuchi, S., Tamatsukuri, T., & Nohtomi, S. 2000. An automotive lateral controller based on generalized predictive control theory. JSAE review 21(1): 53-59.
  • 12. Kalman, R. E. et al. 1960. Contributions to the theory of optimal control. Boletin de la Sociedad Matem´atica Mexicana 5(2): 102-119.
  • 13. Kozlik, C. et al. 2016. Dynamic matrix control applied to emission control of a diesel engine. International Journal of Engine Research 17(5): 556-75
  • 14. Lisowski, J. 2012. Game control methods in avoidance of ship collisions, Polish Maritime Research Special Issue 19(1): 3-11
  • 15. Łebkowski, A. 2018. Design of an Autonomous Transport System for Coastal Areas. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation 12(1): 117-124.
  • 16. Miller, A. 2016a. Identification of a multivariable incremental model of the vessel. 21st International Conference on Methods and Models in Automation and Robotics, IEEE: 218-224.
  • 17. Miller, A. 2016b. Interaction Forces Between Two Ships During Underway Replenishment. The Journal of Navigation 69(6): 1197-1214
  • 18. Perez, T. 2005. Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins. Springer Verlag: London
  • 19. Rybczak, M. 2018. Improvement of control precision for ship movement using a multidimensional controller. Automatika 59(1): 63-70.
  • 20. Shouji, T., Ishiguro, T. & Mizoguchi. S. Hydrodynamic forces by propeller and rudder interaction at low speed. Int. IFAC Conference MARSIM and ICSM, Tokyo, Japan, June 199
  • 21. Testud, J. et al. 1978. Model predictive heuristic control. Applications to industrial processes. Automatica 14(5): 413-428.
  • 22. Tomera, M. 2016, Hybrid real-time way-point controller for ships. In 21th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 630635.
  • 23. Tomera, M. 2018. Multi-operational control of the ship motion in a system with switchable structure. Gdynia
  • 24. Wang, P. K. 1991. Navigation strategies for multiple autonomous mobile robots moving in formation. Journal of Robotic Systems 8(2): 177-195.
  • 25. Zavala, V. M. & Biegler, L. T. 2009. Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control. Computers & Chemical Engineering 33(10): 1735-1746.
  • 26. Zhoghui, H. & Xiuyan, P. 2011. Integral nested sliding mode control for ship turning. 3rd IEEE International Conference on Communication Software and Networks (ICCSN), Xi’an, China
  • 27. iSSMC - Ship Stabilization and Motion Control System. 2014 IMAR Navigation & Control GmbH. Information Brochure
  • 28. Ride Control Systems, Advanced Ship Motion Reduction in Five Degrees of Freedom. Naiad Dynamics 2015, Infmation Brochure
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90e1805e-9f3f-4a3f-b95f-687e4cabd5e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.