PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DIC application for damage detection in FRP composite specimens based on an example of a shearing test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibre reinforced polymer (FRP) composite materials are widely used in many branches of life from aerospace and automotive, through boatbuilding, mechanical and civil engineering even to art. Thanks to their lightweight, high strength, and ease of shaping are very attractive materials. The main disadvantage of FRP composites is the possibility of defects in their structures which influence on proper work of the material. These defects can appear in the production phase as well as becaused by impact. Especially sensitive to defects/damages are the responsible structures such as those used in the aerospace industry. In this paper, the application of digital image correlation (DIC) to tracking the development of strain fields in FRP composites with different types of fibres is proposed. Thanks to the use of the DIC the finding of areas where the strain distribution (caused by loads) is different than in surroundings is possible. The presented measurement technique is vision-based, non-contact, and enables full-field measurements without disturbing structure behaviour by any additional mass. This method, in combination with other non-destructive testing is potentially applicable in damage detection of the aircraft sheathing parts. However, further research in order to its application to online monitoring is required, especially considering the minimisation of equipment, supply of energy and wireless data transmission.
Rocznik
Strony
art. no. e47, 2024
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
  • Department of Structural Mechanics, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
  • Department of Structural Mechanics, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-001 Rzeszów, Poland
  • Department of Roads and Bridges, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
autor
  • Department of Roads and Bridges, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
Bibliografia
  • 1. Sause MGR, Jasiűnienė E, editors. Structural health monitoring damage detection systems for aerospace. Berlin: Springer; 2021.
  • 2. Ortiz JD, Dolati SSK, Malla P, Nanni A, Mehrabi A. FRP-reinforced/strengthened concrete: state-of-the-art review on durability and mechanical Effects. Mater MDPI AG. 1990;2023:16. https://doi.org/10.3390/ma16051990.
  • 3. Friedrich K, Almajid AA. Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater. 2012;20:107–28. https:// doi. org/ 10. 1007/s10443-012-9258-7.
  • 4. Frej HBH, Léger R, Perrin D, Ienny P, Gérard P, Devaux J-F. Recovery and reuse of carbon fibre and acrylic resin from thermoplastic composites used in marine application. Resour Conserv Recycl. 2021;173: 105705. https://doi.org/10.1016/j.resconrec.2021.105705.
  • 5. Qambela CJ, Heyns PS, Inglis HM. Damage detection for laminated composites using full-field digital image correlation. J Non-destruct Eval. 2021. https://doi.org/10.1007/s10921-021-00785-7.
  • 6. Balasubramaniam K, Fiborek P, Ziaja D, Jurek M, Sawczak M, Soman R, Malinowski PH. Global and local area inspection methods in damage detection of carbon fiber composite structures. Measurement. 2022;187: 110336. https://doi.org/10.1016/j.measurement.2021.110336.
  • 7. Smolnicki M, Duda S, Zielonka P, Stabla P, Lesiuk G, Lopes CCC. Combined experimental–numerical mode I fracture characterization of the pultruded composite bars. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-023-00684-w.
  • 8. Mieloszyk M, Jurek M, Majewska K, Ostachowicz W. Terahertz time domain spectroscopy and imaging application for analysis of sandwich panel with embedded fibre Bragg grating sensors and piezoelectric transducers. Opt Lasers Eng. 2020;134:106226. https://doi.org/10.1016/j.optlaseng.2020.106226.
  • 9. Yunfei D, Yuetong W. Research on low-velocity impact resistance and damage characteristics of M-type GFRP foldcore sandwich structure. Arch Civ Mech Eng. 2023. https:// doi. org/ 10. 1007/s43452-023-00709-4.
  • 10. Capriotti M, Kim H, di Scalea FL, Kim H. Detection of major impact damage to composite aerospace structures by ultrasonic guided waves and statistical signal processing. Procedia Eng. 2017;199:1550–5. https://doi.org/10.1016/j.proeng.2017.09.505.
  • 11. Ksica F, Hadas Z, Hlinka J. Integration and test of piezocomposite sensors for structure health monitoring in aerospace. Measurement. 2019;147: 106861. https://doi.org/10.1016/j.measurement.2019.106861.
  • 12. Katunin A, Holewik F. Crack identification in composite elements with non-linear geometry using spatial wavelet transform. Arch Civ Mech Eng. 2013;13:287–96. https://doi.org/10.1016/j.acme.2013.02.003.
  • 13. Holford KM, Pullin R, Evans SL, Eaton MJ, Hensman J, Worden K. Acoustic emission for monitoring aircraft structures. Proc Inst Mech Eng Part G J Aerosp Eng. 2009;223:525–32. https://doi.org/10.1243/09544100jaero404.
  • 14. Sierra-Pérez J, Alvarez-Montoya J. Damage detection in composite aerostructures from strain and telemetry data fusion by means of pattern recognition techniques. In: 9th European Workshop on Structural Health Monitoring July 10–13, 2018, Manchester, United Kingdom; 2018.
  • 15. Jones EMC, Iadicola MA, Editors. A good practices guide for digital image correlation. International Digital Image Correlation Society. 2018.
  • 16. Laurin F, Charrier J-S, Lévêque D, Maire J-F, Mavel A, Nuñez P. Determination of the properties of composite materials thanks to digital image correlation measurements. Procedia IUTAM. 2012;4:106–15. https://doi.org/10.1016/j.piutam.2012.05.012.
  • 17. Golewski P, Sadowski T, Kneć M, Budka M. The effect of thermal aging degradation of CFRP composite on its mechanical properties using destructive and non-destructive methods and the DIC system. Polym Test. 2023;118: 107902. https://doi.org/10.1016/j.polymertesting.2022.107902.
  • 18. Sadowski T, Nowicki M. Damage of thin-walled box beams with omega cross-section joined by adhesive layers subjected to bending deformation process. IOP Conf Ser Mater Sci Eng. 2019;613:012052. https://doi.org/10.1088/1757-899x/613/1/012052.
  • 19. Hebert J, Khonsari M. The application of digital image correlation (DIC) in fatigue experimentation: a review. Fatigue Fract Eng Mater Struct. 2022;46:1256–99. https://doi.org/10.1111/ffe.13931.
  • 20. Feng W, He P, Pavlovic M. Combined DIC and FEA method for analysing debonding crack propagation in fatigue experiments on wrapped composite joints. Compos Struct. 2022;297: 115977.https://doi.org/10.1016/j.compstruct.2022.115977.
  • 21. Srilakshmi R, Ramji M, Chinthapenta V. Fatigue crack growth study of CFRP patch repaired Al 2014–T6 panel having an inclined center crack using FEA and DIC. Eng Fract Mech. 2015;134:182–201. https://doi.org/10.1016/j.engfracmech.2014.12.012.
  • 22. Venkatachalam S, Mohiddin SMK, Murthy H. Determination of damage evolution in CFRP subjected to cyclic loading using DIC. Fatigue Fract Eng Mater Struct. 2018;41:1412–25. https://doi.org/10.1111/ffe.12786.
  • 23. Calvo JV, Feito N, Miguélez MH, Giner E. Modeling the delamination failure under compressive loads in CFRP laminates based on digital image correlation analysis. Compos Struct. 2022;287:115265. https://doi.org/10.1016/j.compstruct.2022.115265.
  • 24. Okuyama I, Koyanagi J, Arikawa S, Yoneyama S. Dynamic and static failure behavior of notched CFRP laminate investigated by digital image correlation. Mech Time-Depend Mater. 2013;18:685–95. https://doi.org/10.1007/s11043-013-9224-2.
  • 25. Wang Y, Luo Q, Xie H, Li Q, Sun G. Digital image correlation (DIC) based damage detection for CFRP laminates by using machine learning based image semantic segmentation. Int J Mech Sci. 2022;230: 107529. https://doi.org/10.1016/j.ijmecsci.2022.107529.
  • 26. Karny M. Determination of in-plane shear properties of laminate with V-notch rail shear test and digital image correlation. Trans Aerosp Res. 2019;2019:57–65. https:// doi. org/ 10. 2478/tar-2019-0017.
  • 27. ASTM D7078/D7078M-12. Standard test method for shear properties of composite materials by V-notched rail shear method.
  • 28. ASTM D3518/D3518M-18. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate.
  • 29. Luan L, Crosbie L, Michel S, Hack E. Digital Image Correlation (DIC) prototype system for crack propagation monitoring in aircraft assemblies [version 2; peer review: 2 approved]. Open Res Europe 2022, 2:82. https://doi.org/10.12688/openreseurope.14599.1.
  • 30. Araldite ® LY 1564*/Aradur ® 3486*/Aradur ® 3487* WARM CURING EPOXY SYSTEM, Huntsman Advanced Materials (Switzerland) GmbH, system datasheet, 25.07.2012.
  • 31. Araldite ® LY 1568*/Aradur ® 3489*/Aradur ® 3492* WARM CURING EPOXY SYSTEM, Huntsman Advanced Materials (Switzerland) GmbH, system datasheet, 25.07.2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90dcf5a2-7b5b-4bfd-a69c-8926338fdcd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.