PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mutual position of communication network users on accuracy of positioning by telemetry method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we solve the problem of the influence of the mutual position of the users of the communication network on the accuracy of the telemetric navigation system. We present the principle of operation of a telemetry navigation system and examine the accuracy of determining the position of users of the communication network depending on their mutual position. The telemetric method of determining the position of users of a communication network can be used in shipping or air transport. The simulation of the telemetry system will be performed in the Matlab software environment.
Twórcy
autor
  • Technical University of Kosice, Kosice, Slovakia
  • Technical University of Kosice, Kosice, Slovakia
Bibliografia
  • 1. Borko, A., Klein, I., Even-Tzur, G.: GNSS/INS Fusion with Virtual Lever-Arm Measurements. Sensors. 18, 7, (2018). https://doi.org/10.3390/s18072228.
  • 2. Džunda, M., Dzurovčin, P., Melniková, L.: Determination of Flying Objects Position. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 13, 2, 423–428 (2019). https://doi.org/10.12716/1001.13.02.21.
  • 3. Džunda, M., Kotianová, N.: Presnosť relatívnej navigácie v komunikačnej sieti letectva. TU, Košice (2017).
  • 4. Džunda, M., Kotianová, N., Dzurovčin, P., Szabo, S., Jenčová, E., Vajdová, I., Koščák, P., Liptáková, D., Hanák, P.: Selected Aspects of Using the Telemetry Method in Synthesis of RelNav System for Air Traffic Control. International Journal of Environmental Research and Public Health. 17, 1, (2020). https://doi.org/10.3390/ijerph17010213.
  • 5. Kim, E.: Alternative DME/N pulse shape for APNT. In: 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). pp. 4D2-1 (2013). https://doi.org/10.1109/DASC.2013.6712591.
  • 6. Kim, E., Seo, J.: SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation. Sensors. 17, 10, (2017). https://doi.org/10.3390/s17102183.
  • 7. Li, M., Nie, W., Xu, T., Rovira-Garcia, A., Fang, Z., Xu, G.: Helmert Variance Component Estimation for MultiGNSS Relative Positioning. Sensors. 20, 3, (2020). https://doi.org/10.3390/s20030669.
  • 8. Li, S., Ni, Y., Cai, N.: Optimal strategy of DME beacon distrbution for DME/DME area navigation. In: 2012 IEEE 11th International Conference on Signal Processing. pp. 2036–2039 (2012). https://doi.org/10.1109/ICoSP.2012.6491981.
  • 9. Lindner, M., Schiller, I., Kolb, A., Koch, R.: Time-ofFlight sensor calibration for accurate range sensing. Computer Vision and Image Understanding. 114, 12, 1318–1328 (2010). https://doi.org/10.1016/j.cviu.2009.11.002.
  • 10. Lo, S., Chen, Y.H., Enge, P., Peterson, B., Erikson, R., Lilley, R.: Distance Measuring Equipment Accuracy Performance Today and for Future Alternative Position Navigation and Timing (APNT). Presented at the Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013) September 20 (2013).
  • 11. Miller, A., Miller, B., Popov, A., Stepanyan, K.: UAV Landing Based on the Optical Flow Videonavigation. Sensors. 19, 6, (2019). https://doi.org/10.3390/s19061351.
  • 12. Opromolla, R.: Magnetometer Calibration for Small Unmanned Aerial Vehicles Using Cooperative Flight Data. Sensors. 20, 2, (2020). https://doi.org/10.3390/s20020538.
  • 13. Ostroumov, I.V., Kuzmenko, N.S.: Accuracy estimation of alternative positioning in navigation. In: 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). pp. 291–294 (2016). https://doi.org/10.1109/MSNMC.2016.7783164.
  • 14. Raboaca, M.S., Dumitrescu, C., Manta, I.: Aircraft Trajectory Tracking Using Radar Equipment with Fuzzy Logic Algorithm. Mathematics. 8, 2, (2020). https://doi.org/10.3390/math8020207.
  • 15. Xu, Y., Zhang, Q., Zhang, J., Wang, X., Yu, Z.: A VehicleModel-Aided Navigation Reconstruction Method for a Multicopter during a GPS Outage. Electronics. 10, 5, (2021). https://doi.org/10.3390/electronics10050528.
  • 16. Yang, W., Liu, Y., Liu, F.: An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers. Sensors. 20, 15, (2020). https://doi.org/10.3390/s20154073.
  • 17. Zacik, N., Holoda, S., Novak, A., Otto, I., Jonas, P.: MultiStatic Surveillance Radar Primary Data Simulation. Belgrade: City Net Scien Res Ctr Ltd-Belgrade, 2018, pp. 1–6.
  • 18. Zacik, N., Novak, A.: Passive Radar System for Slovakia. : Scientific Research Center Ltd Belgrade, 2016, pp. 31– 35.
  • 19. Zhao, J., Li, Z., Ge, J., Wang, L., Wang, N., Zhou, K., Yuan, H.: The First Result of Relative Positioning and Velocity Estimation Based on CAPS. Sensors. 18, 5, (2018). https://doi.org/10.3390/s18051528.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90dbe34e-40f0-4290-ad44-10be5ca43574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.