PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensorial techniques of odour measurements – a relationship between odour concentration and odour intensity for a selected waste management facility

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sensoryczne techniki pomiaru odorów – zależność między stężeniem odorów a ich intensywnością dla wybranego obiektu gospodarki odpadami
Języki publikacji
EN
Abstrakty
EN
Sensory analyses are one of the most frequently used odour research methods that allow establishing the most important odour characteristics, i.e. odour concentration and odour intensity, characterised by a high degree of interrelationship. During an11-month study odour concentration and intensity were measured at selected mechanical-biological solid municipal waste treatment plant at 35 measuring locations to assess the degree of correlation between those two parameters. Commonly used Weber-Fechner law was applied to assess the correlation. Results indicate a high degree of correlation between odour concentration and intensity, for example, R2 valued for two different approaches at 0.87, and 0.95, while Pearson’s r valued at 0.93, and 0.97. Following the results this proves that odour concentration and odour intensity could potentially be used interchangeably for odour assessment. However, applying Weber-Fechner law for prediction of odour concentration based on odour intensity measurements gives imprecise results. Such approach could be potentially applied when limited measurements of odour concentration are available as determination of odour intensity that could be performed even by Facility employees.
PL
Analizy sensoryczne stanowią jedną z najczęściej stosowanych metod badań odorów, pozwalającą na określenie najważniejszych ich cech, takich jak stężenie i intensywność. W badaniach trwających 11 miesięcy w 35 wyselekcjonowanych punktach pomiarowych prowadzono pomiary stężenia i intensywności odorów na wybranym zakładzie mechaniczno-biologicznego przetwarzania odpadów komunalnych. Celem było zbadanie związku między tymi dwoma parametrami, wykorzystując m.in. prawo Webera-Fechnera. Wyniki wykazały wysoki stopień korelacji między stężeniem a intensywnością zapachu, tj. współczynnik R2 dla dwóch różnych analizowanych podejść wyniósł odpowiednio 0.87 i 0.95, podczas gdy współczynnik korelacji Pearsona wyniósł odpowiednio 0.93 i 0.97. To sugeruje, że zarówno stężenie, jak i intensywność odorów mogą być użytecznymi parametrami do opisu sytuacji zapachowej w badanym obiekcie. Niemniej jednak zastosowanie prawa Webera-Fechnera do przewidywania stężeń odorów na podstawie pomiarów intensywności daje nieprecyzyjne wyniki. Pomimo tego potencjalne zastosowanie takiego podejścia może być korzystne w sytuacjach ograniczonych możliwości pomiarów stężeń odorów, gdyż określenie intensywności odorów może być, po odpowiednim treningu, wykonane nawet przez pracowników zakładu.
Rocznik
Tom
Strony
99--120
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology
  • Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano (SA), Italy
Bibliografia
  • 1. Barczak, R. and Kulig, A., (2016). Odour monitoring of a municipal wastewater treatment plant in Poland by field olfactometry. Chemical Engineering Transactions, 54, pp. 331–336. https://doi.org/10.3303/CET1654056.
  • 2. Barczak, R.J. and Kulig, A., (2017). Comparison of different measurement methods of odour and odorants used in the odour impact assessment of wastewater treatment plants in Poland. Water Science and Technology, 75(4), pp. 944–951. https://doi.org/ 10.2166/wst.2016.560.
  • 3. Bax, C., Sironi, S. and Capelli, L., (2020). How can odours be measured? An overview of methods and their applications. Atmosphere, 11(1). https://doi.org/10.3390/atmos 11010092.
  • 4. Bian, Y., Gong, H. and Suffet, I.H., (2021). The use of the odour profile method with an “odour patrol” panel to evaluate an odour impacted site near a landfill. Atmosphere, 12(4). https://doi.org/10.3390/atmos12040472.
  • 5. Brancher, M., Griffiths, K.D., Franco, D. and de Melo Lisboa, H., (2017). A review of odour impact criteria in selected countries around the world. Chemosphere, 168, pp. 1531–1570. https://doi.org/10.1016/j.chemosphere.2016.11.160.
  • 6. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. and Penza, M., (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11(5), pp. 5290–5322. https://doi.org/10.3390/s110505290.
  • 7. Byliński, H., Kolasińska, P., Dymerski, T., Gębicki, J. and Namieśnik, J., (2017). Determination of odour concentration by TD-GC×GC–TOF-MS and field olfactometry techniques. Monatshefte fur Chemie, 148(9), pp. 1651–1659. https://doi.org/10.1007/ s00706-017-2023-8.
  • 8. Conti, C., Guarino, M. and Bacenetti, J., (2020). Measurements techniques and models to assess odour annoyance: A review. Environment International, 134. https://doi.org/ 10.1016/j.envint.2019.105261.
  • 9. St. Croix Sensory, Inc. (2023a). Odour Sensitivity Test Kit product website: https://www. fivesenses.com/equipment/nasalranger/nasalranger/ [10.05.2023].
  • 10. St. Croix Sensory, Inc. (2023b). Odour Sensitivity Test Kit product website: https:// www.fivesenses.com/equipment/olfactometry-equipment/odor-sensitivity-test-kit/ [10.05.2023].
  • 11. Dobrzyniewski, D., Szulczyński, B. and Gębicki, J., (2022). Determination of Odour Air Quality Index (OAQII ) Using Gas Sensor Matrix. Molecules, 27(13). https://doi. org/10.3390/molecules27134180.
  • 12. Fisher, R.M., Barczak, R.J., Suffet, I.H.M., Hayes, J.E. and Stuetz, R.M., (2018). Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Science of the Total Environment, 634, pp. 214–223. https://doi.org/ 10.1016/j.scitotenv.2018.03.352.
  • 13. Guillot, J.M., Trousset, F. and Daclin, N., (2022). Limitations of FIDOL Factors for Odour Impact Assessment: Potential Ways of Improvements. Chemical Engineering Transactions, 95, pp. 163–168. https://doi.org/10.3303/CET2295028.
  • 14. Jiang, J., Coffey, P. and Toohey, B., (2006). Improvement of odour intensity measurement using dynamic olfactometry. Journal of the Air and Waste Management Association, 56(5), pp. 675–683. https://doi.org/10.1080/10473289.2006.10464474.
  • 15. Jońca, J., Pawnuk, M., Arsen, A. and Sówka, I., (2022). Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants – A Review. Sensors, 22(4). https://doi.org/10.3390/s22041510.
  • 16. Kitson, J., Leiva, M., Christman, Z. and Dalton, P., (2019). Evaluating Urban Odour with Field Olfactometry in Camden, NJ. Urban Science, 3(3), p. 93. https://doi. org/10.3390/urbansci3030093.
  • 17. Kulig, A. and Szyłak-Szydłowski, M., (2019). Assessment of the effects of wastewater treatment plant modernization by means of the field olfactometry method. Water (Switzerland), 11(11). https://doi.org/10.3390/w11112367.
  • 18. Kulig, A., Szyłak-Szydłowski, M. and Wiśniewska, M., (2022). Application of Field Olfactometry to Monitor the Odour Impact of a Municipal Sewage System. Energies, 15(11). https://doi.org/10.3390/en15114015.
  • 19. Laor, Y., Parker, D. and Pagé, T., (2014). Measurement, prediction, and monitoring of odours in the environment: A critical review. Reviews in Chemical Engineering, 30 (2), pp. 139–166. https://doi.org/10.1515/revce-2013-0026.
  • 20. Li, C.J., Yao, Q., Liu, Y.L., Wang, Y.M. and Feng, S.H., (2021). Application Research on Objective Evaluation of Vehicle Interior Odour Based on Weber-Fechner Law. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. https://doi.org/ 10.1088/1755-1315/657/1/012019.
  • 21. Muñoz, R., Sivret, E.C., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. and Stuetz, R.M., (2010). Monitoring techniques for odour abatement assessment. Water Research, 44(18), pp. 5129–5149. https://doi.org/10.1016/j.watres.2010.06.013.
  • 22. Pawnuk, M., Sówka, I. and Naddeo, V., (2023). The Use of Field Olfactometry in the Odour Assessment of a Selected Mechanical–Biological Municipal Waste Treatment Plant within the Boundaries of the Selected Facility – A Case Study. Sustainability, 15(9), p. 7163. https://doi.org/10.3390/su15097163.
  • 23. Pawnuk, M., Szulczyński, B., den Boer, E. and Sówka, I., (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odour emissions. Archives of Environmental Protection, 48(3), pp. 3–20. https://doi.org/10.24425/aep.2022.142685.
  • 24. Polish Committee for Standardization (2007). Polish Standard PN-EN 13725:2007: Air Quality – Determination of Odour Concentration by Dynamic Olfactometry.
  • 25. Sówka, I., Pachurka, Ł., Bezyk, Y., Grzelka, A. and Miller, U., (2017). Application of field studies and geostatistical methods in assessment of odour nuisance based on selected examples from municipal, industrial and agricultural environments. Ochrona Srodowiska i Zasobow Naturalnych, 28(2), pp. 16–21. https://doi.org/10.1515/oszn2017-0007.
  • 26. Ubeda, Y., Lopez-Jimenez, P.A., Nicolas, J. and Calvet, S., (2013). Strategies to control odours in livestock facilities: A critical review. Spanish Journal of Agricultural Research, 11(4), pp. 1004–1015. https://doi.org/10.5424/sjar/2013114-4180.
  • 27. Wiśniewska, M., Kulig, A. and Lelicińska-Serafin, K., (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Applied Sciences, 1(6). https://doi.org/10.1007/ s42452-019-0534-0.
  • 28. Wiśniewska, M., Kulig, A. and Lelicińska-Serafin, K., (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031093.
  • 29. Wiśniewska, M., Kulig, A. and Lelicińska-Serafin, K., (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46(3), pp. 60–68. https://doi.org/10.24425/ aep.2020.134536.
  • 30. Wojnarowska, M., Sołtysik, Ma, Turek, P., Szakiel, J., Wojnarowska, M., Sołtysik, M., Turek, P. and Szakiel, J., (2020). Odour Nuisance As a Consequence of Preparation for Circular Economy. European Research Studies Journal, XXIII(1), pp. 128–142. https:// doi.org/10.35808/ersj/1541.
  • 31. Zhang, Q., Feddes, J., Edeogu, I. and Zhou, X., (2002). Correlation between odour intensity assessed by human assessors and odour concentration measured with olfactometers, Canadian Biosystems Engineering.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90db27ea-ae2e-4aa6-b911-3c2a2dd8bb97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.