PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inhomogeneity detection in phytoplankton time series using multivariate analyses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoplankton communities have long been used as water quality indicators within environmental policies. This has fostered the development of national and international phytoplankton monitoring programs, but these networks are subject to sources of uncertainty due to laboratory issues. Nevertheless, studies regarding the interference associated with these aspects are not well-documented. Hence, a long time series (2003-2015) from the Basque continental shelf (southeastern Bay of Biscay) was analyzed to evaluate the uncertainty given by laboratory strategies when studying phytoplankton variability. Variability in phytoplankton communities was explained not only by environmental conditions but also by changes in fixatives (glutaraldehyde and acidic Lugol's solution) and laboratory staff. Based on Bray-Curtis distances, phytoplankton assemblages were found to be significantly dissimilar according to the effect of changes in the specialist handling the sample and the employed fixative. The pair-wise permutational multivariate analysis of variance (PERMANOVA) showed significant differences between the two fixatives utilized and also between the three taxonomists involved. Thus, laboratory-related effects should be considered in the study of phytoplankton time series.
Czasopismo
Rocznik
Strony
243--254
Opis fizyczny
Bibliogr. 55 poz., mapa, rys., tab., wykr.
Twórcy
  • AZTI, Marine Research Division, Pasaia, Spain
  • AZTI, Marine Research Division, Pasaia, Spain
  • AZTI, Marine Research Division, Pasaia, Spain
  • Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa Spain
  • Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), 48620 Plentzia, Spain
  • Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa Spain
  • Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), 48620 Plentzia, Spain
  • AZTI, Marine Research Division, Pasaia, Spain
Bibliografia
  • [1] Bode, A., Estévez, M. G., Varela, M., Vilar, J. A., 2015. Annual trend of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar. Environ. Res. 110, 81-91.
  • [2] Booth, B., 1987. The use of autofluorescence for analyzing oceanic phytoplankton communities. Bot. Mar. 30, 101-108.
  • [3] Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology 84, 511-525.
  • [4] Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., 2008. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Mar. Pollut. Bull. 56, 1519-1537.
  • [5] Borja, A., Chust, G., Rodríguez, J. G., Bald, J., Belzunce-Segarra, M. J., Franco, J., Garmendia, J. M., Larreta, J., Menchaca, I., Muxika, I., Solaun, O., Revilla, M., Uriarte, A., Valencia, V., Zorita, I., 2016. ‘The past is the future of the present’: Learning from long-time series of marine monitoring. Sci. Total Environ. 566-567, 698-711.
  • [6] Borja, A., Franco, J., Valencia, V., Bald, J., Muxika, I., Jesús Belzunce, M. A., Solaun, O., 2004. Implementation of the European water framework directive from the Basque country (northern Spain): a methodological approach. Mar. Pollut. Bull. 48, 209-218.
  • [7] Braak, C. J. F., Smilauer, P., 2002. CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca NY, USA: www.canoco.com (Microcomputer Power). Mathematical and Statistical Methods — Biometrics.
  • [8] Bricelj, V. M., Shumway, S. E., 1998. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev. Fish. Sci. 6, 315-383.
  • [9] Buishand, T. A., 1982. Some methods for testing the homogeneity of rainfall records. J. Hydro. 58, 11-27.
  • [10] Carneiro, F. M., Bini, L. M., Rodrigues, L. C., 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecol. Indic. 10, 249-255.
  • [11] Carneiro, F. M., Nabout, J. C., Vieira, L. C. G., Lodi, S., Bini, L. M., 2013. Higher taxa predict plankton beta-diversity patterns across an eutrophication gradient. Nat. Conservaçao 11, 43-47.
  • [12] Clarke, K., Gorley, R., 2006. User manual/tutorial. Primer-E Ltd., Plymouth, 93 pp.
  • [13] Clarke, K. R., Somerfield, P. J., Chapman, M. G., 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55-80.
  • [14] Clesceri, L., Greenberg, A., Trussell, R., 1989. Standard methods for the examination of water and wastewater, 17th edn., Port City Press, Baltimore 232 pp.
  • [15] Cloern, J., Foster, S., Kleckner, A., 2013. Review: phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences Discus 10, 17725-17783.
  • [16] Cloern, J. E., Jassby, A. D., 2010. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar. Coast. 33, 230-241.
  • [17] Costa, A. C., Negreiros, J., Soares, A., 2008. Identification of inhomogeneities in precipitation time series using stochastic simulation. geoENV VI-Geostatistics for Environmental Applications. Springer, Berlin, 275-282.
  • [18] Culverhouse, P. F., Williams, R., Reguera, B., Herry, V., González-Gil, S., 2003. Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17-25.
  • [19] Devlin, M., Barry, J., Painting, S., Best, M., 2009. Extending the phytoplankton tool kit for the UK Water Framework Directive: indicators of phytoplankton community structure. Hydrobiologia 633, 151-168.
  • [20] Devlin, M. J., Breckels, M., Graves, C., Barry, J., Capuzzo, E., Huerta, F. P., Al-Ajmi, F., Al-Husain, M., LeQuesne, W., Lyons, B. P., 2019. Seasonal and temporal drivers influencing phytoplankton community in Kuwait marine waters, documenting a changing landscape in the Gulf. Frontiers Mar. Sci. 6, 1-22.
  • [21] Domingues, R. B., Barbosa, A., Galvão, H., 2008. Constraints on the use of phytoplankton as a biological quality element within the Water Framework Directive in Portuguese waters. Mar. Pollut. Bull. 56, 1389-1395.
  • [22] Dromph, K. M., Agusti, S., Basset, A., Franco, J., Henriksen, P., Icely, J., Lehtinen, S., Moncheva, S., Revilla, M., Roselli, L., 2013. Sources of uncertainty in assessment of marine phytoplankton communities. Hydrobiologia 704, 253-264.
  • [23] Edler, L., Elbrächter, M., 2010. The Utermöhl method for quantitative phytoplankton analysis. In: Karlson, B., Cusack, C., Bresnan, E. (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, 110. Intergovernmental Oceanographic Commission of UNESCO, 13-20.
  • [24] Garmendia, M., Borja, Á., Franco, J., Revilla, M., 2013. Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives. Mar. Pollut. Bull. 66, 7-16.
  • [25] Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of seawater analyses. Verlag Chemie, Weinheim, 342-355.
  • [26] Guiry, M., Guiry, G., 2015. AlgaeBase. World-wide Electronic Publication. Nat. Univ., Ireland, Galway, http://www.algaebase.org.
  • [27] Hasle, G., 1978. The inverted microscope method. Phytoplankton Manual. UNESCO, Paris, 337 pp.
  • [28] Heino, J., Soininen, J., 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biol. Conserv. 137, 78-89.
  • [29] Hernández, T., Bacher, C., Soudant, D., Belin, C., Barillé, L., 2015. Assessing phytoplankton realized niches using a French national phytoplankton monitoring network. Estuarine, Coast. Shelf Sci. 159, 15-27.
  • [30] Huisman, J., van Oostveen, P., Weissing, F. J., 1999. Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol. Oceanogr. 44, 1781-1787.
  • [31] Jakobsen, H. H., Carstensen, J., Harrison, P. J., Zingone, A., 2015. Estimating time series phytoplankton carbon biomass: Inter-lab comparison of species identification and comparison of volume-to-carbon scaling ratios. Estuarine, Coast. Shelf Sci. 162, 143-150.
  • [32] Kahlert, M., Ács, É., Almeida, S. F., Blanco, S., Dreßler, M., Ector, L., Karjalainen, S. M., Liess, A., Mertens, A., van der Wal, J., 2016. Quality assurance of diatom counts in Europe: towards harmonized datasets. Hydrobiologia 772, 1-14.
  • [33] Kahlert, M., Albert, R. L., Anttila, E. L., Bengtsson, R., Bigler, C., Eskola, T., Gälman, V., Gottschalk, S., Herlitz, E., Jarlman, A., 2009. Harmonization is more important than experience-results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). J. Appl. Phycol. 21, 471-482.
  • [34] Kahlert, M., Kelly, M., Albert, R.-L., Almeida, S. F., Bešta, T., Blanco, S., Coste, M., Denys, L., Ector, L., Fránková, M., 2012. Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessments. Hydrobiologia 695, 109-124.
  • [35] Leakey, R. J. G., Burkill, P. H., Sleigh, M. A., 1994. A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16, 375-389.
  • [36] Legendre, P., Legendre, L., 1998. Numerical Ecology, 2nd edn., Amsterdam, 853 pp.
  • [37] Martinez, E., Antoine, D., D’Ortenzio, F., Gentili, B., 2009. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326, 1253-1256.
  • [38] McCune, B., Grace, J. B., Urban, D. L., 2002. Analysis of ecological communities. MjM software design Gleneden Beach, OR.
  • [39] Menden-Deuer, S., Lessard, E. J., Satterberg, J., 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar. Ecol. Prog. Ser. 222, 41-50.
  • [40] Muñiz, O., Rodríguez, J. G., Revilla, M., Laza-Martínez, A., Seoane, S., Franco, J., 2018. Seasonal variations of phytoplankton community in relation to environmental factors in an oligotrophic area of the European Atlantic coast (southeastern Bay of Biscay). Reg. Stud. Mar. Sci. 17, 59-72, http://dx.doi.org/10.1016/j.rsma.2017.11.011.
  • [41] Mouillot, D., Spatharis, S., Reizopoulou, S., Laugier, T., Sabetta, L., Basset, A., Do Chi, T., 2006. Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquat. Conserv. 16, 469-482.
  • [42] Mukherjee, A., Das, S., Bhattacharya, T., De, M., Maiti, T., Kumar De, T., 2014. Optimization of phytoplankton preservative concentrations to reduce damage during long-term storage. Biopreserv. Biobank. 12, 139-147.
  • [43] Peperzak, L., 2010. An objective procedure to remove observer-bias from phytoplankton time-series. J. Sea Res. 63, 152-156.
  • [44] R Core Team, R. C., 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • [45] Remy, M., Hillebrand, H., Flöder, S., 2017. Stability of marine phytoplankton communities facing stress related to global change: Interactive effects of heat waves and turbidity. J. Exp. Mar. Biol. Ecol. 497, 219-229.
  • [46] Revilla, M., Franco, J., Bald, J., Borja, Á., Laza, A., Seoane, S., Valencia, V., 2009. Assessment of the phytoplankton ecological status in the Basque coast (northern Spain) according to the European Water Framework Directive. J. Sea Res. 61, 60-67.
  • [47] Ribeiro, S., Caineta, J., Costa, A. C., Henriques, R., Soares, A., 2016. Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmos. Res. 171, 147-158.
  • [48] Straile, D., Jochimsen, M. C., Kümmerlin, R., 2013. The use of long-term monitoring data for studies of planktonic diversity: a cautionary tale from two Swiss lakes. Freshwater Biol. 58, 1292-1301.
  • [49] Straile, D., Jochimsen, M. C., Kümmerlin, R., 2015. Taxonomic aggregation does not alleviate the lack of consistency in analysing diversity in long-term phytoplankton monitoring data: a rejoinder to Pomati et al. (2015). Freshwater Biol 60 (5), 1060-1067, https://doi.org/10.1111/fwb.12552.
  • [50] Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1-38.
  • [51] Valencia, V., Franco, J., Borja, Á., Fontán, A., 2004. Hydrography of the southeastern Bay of Biscay. In: Borja, A., Collins, M. (Eds.), Oceanography and Marine Environment of the Basque Country, 70. Elsevier Oceanogr. Ser., 159-194.
  • [52] Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., Sieracki, M. E., 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37, 1434-1446.
  • [53] Wiltshire, K. H., Dürselen, C. D., 2004. Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgoland Mar. Res. 58, 252-268.
  • [54] Yang, Y., Sun, X., Zhao, Y., 2016. Effects of Lugol’s iodine solution and formalin on cell volume of three bloom-forming dinoflagellates. Chin. J. Oceanol. Limn. 35, 858-866.
  • [55] Zarauz, L., Irigoien, X., 2008. Effects of Lugol’s fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method. J. Plankton Res. 30, 1297-1303.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90da395d-be3d-49a7-965e-d2ffff4c3f4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.