PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing of Water Turbidity by Hydrotechnical Structures on the Example of the Wloclawek Reservoir

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamics of river sediment transport reflects morphogenetic processes taking place in the catchment, being at the same time an anthropogenic indicator. The aim of the research is to determine the impact of hydrotechnical structures on the continuity of suspended sediments transport. The research area is the Lower Vistula River with a single dam – Wloclawek, operating since the 1970s. The research included direct measurements of water turbidity in 2013–2016 in characteristic cross-sections of the Vistula River, using commonly used methods. The LISST-25X laser grain composition measurement sensor was also used to collect data, enabling determination of grain size of the suspended sediments. However, on the selected section of the river, modelling of momentary transport of suspended sediments using GIS tools was carried out. There was a significant dynamics of sediments transport in the longitudinal profile of the river, in relation to the diversity of hydrological and morphological conditions of the Vistula River. The impact of Wloclawek Reservoir on water turbidity reduction was determined. The balance of transport of suspended material was related to the processes of erosion and sediment accumulation below the dam. The functioning of the Wloclawek Reservoir in the current system (as a single dam) has a significant impact on sediment transport, which directly determines the course of fluvial processes across the entire Lower Vistula (from km 675 to the estuary) and indirectly in the coastal zone of the Baltic Sea.
Rocznik
Strony
197--205
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
  • Department of Revitalization of Waterways, Faculty of Physical Education, Health and Tourism, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
autor
  • Department of Revitalization of Waterways, Faculty of Physical Education, Health and Tourism, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
autor
  • Department of Revitalization of Waterways, Faculty of Physical Education, Health and Tourism, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
Bibliografia
  • 1. Achrem E., Gierszewski P. 2007. Zbiornik Włocławski (in Polish). Biblioteka Monitoringu Środowiska, Bydgoszcz.
  • 2. Agrawal Y.C., Pottsmith H.C. 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol., 168, 89–114.
  • 3. Babiński Z. 1992. Hydromorphological consequences of regulating the lower Vistula, Poland. Regulated Rivers: Research & Management, 7(4), 337–348.
  • 4. Babiński Z. 2002. Wpływ zapór na procesy korytowe rzek aluwialnych ze szczególnym uwzględnieniem Zbiornika Włocławskiego (in Polish). Wyd. Akademii Bydgoskiej im. Kazimierza Wielkiego, Bydgoszcz.
  • 5. Babiński Z. 2005. The relationship between suspended and bed load transport in river channels. Proc. International Symposium held at the 7th Scientific Assembly of the International Association of Hydrological Sciences, 182–188.
  • 6. Brański J. 1990. Instrukcja wykonywania i opracowania pomiarów rumowiska unoszonego (in Polish). Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
  • 7. Byczkowski A., Żelazo J. 1992. Zmiany reżimu górnej Narwi w wyniku prac melioracyjnych (in Polish). Gospodarka Wodna, 1, 22–25.
  • 8. Ciupa T. 2009. Wpływ zagospodarowania terenu na odpływ i transport fluwialny w małych zlewniach na przykładzie Sufragańca i Silnicy (in Polish). Wyd. Uniwersytetu Jana Kochanowskiego, Kielce.
  • 9. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (dostęp: http://eur-lex.europa.eu/legal-content/EN/ TXT/PDF/?uri=CELEX:32000L0060&rid=1).
  • 10. Felix D., Albayrak I., Abgottspon A., Boes R.M. 2016. Real-time measurements of suspended sediment concentration and particle size using five techniques. Proc. IOP: Earth and Environmental Science, 1057–1066.
  • 11. Gierszewski P. 2007. Warunki transportu zawiesiny w Zbiorniku Włocławskim w świetle analizy jej składu i tekstury (in Polish). Nauka Przyroda Technologie, 2, 1–18.
  • 12. Gierszewski P., Glazik R., Kuciński J. 2005. Multi-annual variability of the concentration of suspended matter in the Włocławek reservoir. Limnological Review, 5, 81–91.
  • 13. Giosan L., Syvitski J.P.M., Constantinescu S., Day J. 2014. Protect the world’s deltas. Nature, 516, 31–33.
  • 14. Habel M. 2013. Dynamics of the Vistula River channel deformations downstream of Włocławek Reservoir. Kazimierz Wielki University Press, Bydgoszcz.
  • 15. Habel M., Babiński Z., Szatten D., Chalov S., Zakhar R., Maerker M. 2016. Clastic sediment transport renewal below Włocławek Reservoir. In: Chaberek-Karwacka G., Malinowska M. (eds.): Geography in the Face of Modern World Challenges. Wyd. LIBRON, Kraków.
  • 16. Habel M., Babiński Z., Szatten D. 2017. A comparison of research approaches in estimation of volume changes of a bed load transport along a river course on the example of a large lowland river. Proc. of the International Conference of Computational Methods in Sciences and Engineering, 170009(1–4).
  • 17. Hu B., Yang Z., Wang H., Sun X., Bi N., Li G. 2009. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrol. Earth Syst. Sci., 13, 2253–2264.
  • 18. Knighton D. 1998. Fluvial forms and processes. A new perspective. Co-published John Wiley and Sons Inc., New York.
  • 19. Kondolf G. 1997. Hungry water: Effects of Dams and Gravel Mining on River Channels. Environ. Manage, 21(4), 533–551.
  • 20. Kondolf G.M. Gao, Y., Annandale G., Morris G., Jiang E., Zhang J., Cao Y., Carling P., Fu K., Guo Q., Hotchkiss R., Peteuil Ch., Sumi T., Wang H.W., Wang Z., Wei Z., Wu, B., Wu, C., Yang C. 2014. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future, 2, 1–25.
  • 21. Kondracki J. 2002. Geografia regionalna Polski (in Polish). Wyd. Nauk. PWN, Warszawa.
  • 22. Kostrzewski A., Mazurek M., Zwoliński Z. 1994. Dynamika transportu fluwialnego górnej Parsęty jako odbicie funkcjonowania systemu zlewni (in Polish). Stowarzyszenie Geomorfologów Polskich, Poznań.
  • 23. Łajczak A. 1999. Współczesny transport i sedymentacja materiału unoszonego w Wiśle i jej dopływach (in Polish). Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 24. Magnuszewski A., Moran S., Yu G. 2010. Modelling lowland reservoir sedimentation conditions and the potential environmental consequences of dam removal: Wloclawek Reservoir, Vistula River, Poland. Proc. IAHS, 345–352.
  • 25. Mapa podziału hydrograficznego Polski. 2007. Zakład Hydrografii i Morfologii Koryt Rzecznych. IMGW, Warszawa.
  • 26. Meade R.H., Moody J.A. 2010. Causes for the decline of suspended – sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process., 24, 35–49.
  • 27. Nilsson C., Reidy C.A., Dynesius M., Revenga C. 2005. Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408.
  • 28. Rocznik statystyczny Rzeczpospolitej Polskiej. 2017. GUS, Warszawa.
  • 29. Shotbolt L.A., Thomas A.D., Hutchinson S.M. 2005. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Progress in Physical Geography, 29(3), 337–361.
  • 30. Slaets J.I.F., Schmitter P., Hilger T., Lamers M., Piepho H., Vien T.D., Cadisch G. 2014. A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. Journal of Hydrology, 513, 45–57.
  • 31. Syvitski J.P.M., Kettner A.J., Overeem I., Hutton E.W., Hannon M.T., Brakenridge G.R., Day J., Vörösmarty C.J., Saito Y., Giosan L., Nicholls R.J. 2009. Sinking deltas due to human activities. Nature Geoscience, 2(10), 681–686.
  • 32. Syvitski J.P.M., Kettner A.J. 2011. Sediment flux and the Anthropocene. Phil. Trans. R. Soc., 957–975.
  • 33. Turowski J.M., Rickenmann D., Dadson S.J. 2010. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57, 1126–1146.
  • 34. Van Rijn L. 1984. Sediment Transport. Part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12), 1733–1754.
  • 35. Vörösmarty C.J., Meybeck M., Fekete B., Sharma K., Green P., Syvitski J.P.M. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39(1–2), 169–190.
  • 36. Walling D.E., Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global Planet. Change, 39, 111–126.
  • 37. Webb B.W., Walling D.E. 1984. Magnitude and frequency characteristics of suspended sediment transport in Devon rivers. In: Burt T.P., Walling D.E. (eds.): Catchment Experiments in Fluvial Geomorphology. Geo Books, 399–415.
  • 38. Wren D., Barkdoll B., Kuhnle R., Derrow R. 2000. Field Techniques for Suspended-Sediment Measurement. Journal of Hydraul. Eng., 126(2), 97–104.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90d90c14-6618-41a0-b23f-1d950d954d2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.