PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Intermittent fault’s parameter framework and stochastic petri net based formalization model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model parametryczny niezdatności przejściowej oraz model formalny oparty na stochastycznej sieci Petriego
Języki publikacji
EN
Abstrakty
EN
The intermittent fault widely exists in many products and brings high safety risk and maintenance cost. At present there are some different opinions on the notion of intermittent fault and there is no comprehensive parameter framework for fully describing intermittent fault. Also the formalization model which can mathematically describe intermittent fault hasn’t been constructed. In this paper, the conception of intermittent fault is discussed. A new definition of intermittent fault is put forward. Then the intermittent fault’s parameter framework is presented. After that, the Stochastic Petri Net (SPN) based formalization model for intermittent fault is constructed. Finally an application of the SPN formalization model is shown. The parameters for intermittent fault are computed based on the proposed model and a case study is presented. The result shows the validity of the model. The model could assist the further research such as intermittent fault diagnosis and prognostic of remaining life.
PL
Niezdatność przejściowa charakteryzuje wiele produktów i pociąga za sobą wysokie zagrożenie bezpieczeństwa oraz wysokie koszty eksploatacji. Obecnie istnieje wiele poglądów na temat pojęcia niezdatności przejściowej; nie stworzono jednak kompleksowego modelu parametrycznego pozwalającego w pełni opisać zjawisko niezdatności przejściowej. Nie skonstuowano także modelu formalnego, za pomocą którego można by opisać niezdatność przejściową w kategoriach matematycznych. W pracy omówiono koncepcję niezdatności przejściowej. Zaproponowano nową definicję tego pojęcia a następnie przedstawiono model parametryczny niezdatności przejściowej. Skonstruowano także model formalny niezdatności przejściowej oparty na stochastycznej sieci Petriego (SPN). Wreszcie, pokazano zastosowanie formalizacji SPN. Na podstawie zaproponowanego modelu obliczono parametry dla niezdatności przejściowej. Przedstawiono także studium przypadku. Otrzymane wyniki potwierdzają wiarygodność modelu. Opracowany model może być pomocny w dalszych badaniach dotyczących problemów, takich jak diagnozowanie niezdatności przejściowej czy prognozowanie pozostałego okresu użytkowania produktu.
Rocznik
Strony
210--217
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology College of Mechatronic Engineering and Automation National University of Defense Technology Changsha, Hunan, 410073, P. R. China
autor
  • Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology College of Mechatronic Engineering and Automation National University of Defense Technology Changsha, Hunan, 410073, P. R. China
autor
  • Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology College of Mechatronic Engineering and Automation National University of Defense Technology Changsha, Hunan, 410073, P. R. China
autor
  • Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology College of Mechatronic Engineering and Automation National University of Defense Technology Changsha, Hunan, 410073, P. R. China
Bibliografia
  • 1. Ball M, Hardie F. Effects and detection of intermittent failures in digital systems. Proceedings of the fall joint computer conference, Montvale, N. J, 1969: 329-335, http://dx.doi.org/10.1145/1478559.1478597.
  • 2. Banerjee N, P.M.Khilar. Performance analysis of distributed intermittent fault diagnosis in wireless sensor networks using clustering. 5th International Conference on Industrial and Information Systems, Mangalore, India, 2010: 13-18, http://dx.doi.org/10.1109/iciinfs.2010.5578744.
  • 3. Constantinescu C. Impact of intermittent faults on nanocomputing devices. The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Edinburgh, UK, 2007: 238-241.
  • 4. Constantinescu C. Intermittent faults and effects on reliability of integrated circuits. Annual Reliability and Maintainability Symposium, Las Vegas, USA, 2008: 370-374, http://dx.doi.org/10.1109/rams.2008.4925824.
  • 5. Correcher A, Garcia E, Morant F, Blasco-Gimenez R, and et al. Diagnosis of intermittent fault dynamics. International Conference on Emerging Technologies and Factory Automation, Hamburg, 2008: 559-566, http://dx.doi.org/10.1109/etfa.2008.4638454.
  • 6. De Kleer J. Diagnosing intermittent faults. 18th International Workshop on Principles of Diagnosis, Nashville, TN, UA, 2007: 45-51.
  • 7. Guilhemsang J, Héron O, Giulieri A. Impact of the application activity on intermittent faults in embedded systems. 29th VLSI Test Symposium, Dana Point, CA, 2011: 191-196, http://dx.doi.org/10.1109/VTS.2011.5783782.
  • 8. Hardie F H, Suhocki R J. Design and use of fault simulation for saturn computer design. IEEE Transactions on Electronic Computers 1967; EC-16(4): 412-429, http://dx.doi.org/10.1109/PGEC.1967.264644.
  • 9. IEC 62551:2012. Analysis techniques for dependability - Petri net techniques.
  • 10. IEC 60050-192:2014. International electrotechnical vocabulary – part 192: Dependability.
  • 11. Kandasamy N, Hayes J P, Murray B T. Transparent recovery from intermittent faults in time-triggered distributed systems. IEEE Transactions on Computers 2003; 52(2): 113-125, http://dx.doi.org/10.1109/TC.2003.1176980.
  • 12. Kothawade S, Chakraborty K, Roy S, Han Y. Analysis of intermittent timing fault vulnerability. Microelectronics Reliability 2012; 52(7): 1515-1522, http://dx.doi.org/10.1016/j.microrel.2012.03.003.
  • 13. Mallela S, Masson G M. Diagnosable systems for intermittent faults. IEEE Transactions on Computers 1978; 100(6): 560-566, http://dx.doi.org/10.1109/TC.1978.1675147.
  • 14. Pan S, Hu Y, Li X. Ivf:Characterizing the vulnerability of microprocessor structures to intermittent faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2012; 20(5): 777-789, http://dx.doi.org/10.1109/TVLSI.2011.2134115.
  • 15. Prasad V B. Computer networks reliability evaluations and intermittent faults. IEEE Proceedings of the 33rd Midwest Symposium on Circuits and Systems, Calgary, Alta, 1990; 327-330.
  • 16. Qi H, Ganesan S, Pecht M. No-fault-found and intermittent failures in electronic products. Microelectronics Reliability 2008; 48(5): 663-674, http://dx.doi.org/10.1016/j.microrel.2008.02.003.
  • 17. Roberts M W. A fault-tolerant scheme that copes with intermittent and transient faults in sequential circuits. Proceedings of the 32nd Midwest Symposium on Circuits and Systems, Champaign, IL, 1989: 36-39.
  • 18. Sedighi T, Phillips P, D Foote P. Model-based intermittent fault detection. Procedia CIRP 2013; 11: 68-73, http://dx.doi.org/10.1016/j.procir.2013.07.065.
  • 19. Singh S, Kodali A, Pattipati K. A factorial hidden markov model (FHMM)-based reasoner for diagnosing multiple intermittent faults. International Conference on Automation Science and Engineering, Bangalore, India, 2009: 146-151, http://dx.doi.org/10.1109/coase.2009.5234134.
  • 20. Sorensen B A, Kelly G, Sajecki A, Sorensen P W. An analyzer for detecting intermittent faults in electronic devices. Systems Readiness Technology Conference(AUTOTESTCON '94), Anaheim, CA, 1994: 417–421.
  • 21. Steadman B, Sievert L S, Sorensen B, Berghout F. Attacking "bad actor" and "no fault found" electronic boxes. AUTOTESTCON, Orland, FL, UA, 2005: 821-824.
  • 22. Steadman B, Berghout F, Olsen N. Intermittent fault detection and isolation system. AUTOTESTCON, Salt Lake City, 2008: 37-40, http://dx.doi.org/10.1109/autest.2008.4662580.
  • 23. Syed W A, Khan S, Phillips P, Perinpanayagam S. Intermittent fault finding strategies. 2nd International Through-life Engineering Services Conference, Cranfield, Cranfield University, UK, 2013: 74-79, http://dx.doi.org/10.1016/j.procir.2013.07.062.
  • 24. Wei J, Rashid L, Pattabiraman K, Gopalakrishnan S. Comparing the effects of intermittent and transient hardware faults on programs. 41st International Conference on Dependable Systems and Networks Workshops, Hong Kong, 2011: 53-58, http://dx.doi.org/10.1109/dsnw.2011.5958835.
  • 25. Wells P M, Chakraborty K, Sohi G S. Adapting to intermittent faults in multicore systems. 13th International Conference on Architectural Support for Programming Languages and Operating Systems, Seattle, Washington, UA, 2008: 255-264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90d5fc36-76a1-4b4b-80d3-fdabe768875b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.