Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We construct via forcing a model for the level by level equivalence between strong compactness and supercompactness in which both V=HOD and the Ground Axiom (GA) are true. In our model, various versions of the combinatorial principles □ and ♢ hold. In the model constructed, there are no restrictions on the class of supercompact cardinals.
Wydawca
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics, Baruch College of CUNY, New York, NY 10010, U.S.A.
- The CUNY Graduate Center, Mathematics 365 Fifth Avenue, New York, NY 10016, U.S.A.
Bibliografia
- [1] A. Apter, Diamond, square, and level by level equivalence, Arch. Math. Logic 44(2005), 387-395.
- [2] A. Apter, Expanding k’s power set in its ultrapowers, Radovi Mat. 10 (2001), 149-156.
- [3] A. Apter and J. Cummings, An L-like model containing very large cardinals, Arch. Math. Logic 47 (2008), 65-78.
- [4] A. Apter and Sh. Friedman, Coding into HOD via normal measures with some applications, Math. Logic Quart. 57 (2011), 366-372.
- [5] A. Apter and S. Shelah, On the strong equality between supercompactness and strong compactness, Trans. Amer. Math. Soc. 349 (1997), 103-128.
- [6] A. Brooke-Taylor, Large cardinals and definable well-orders on the universe, J. Symbolic Logic 74 (2009), 641-654.
- [7] Y. Cheng, S.-D. Friedman and J. D. Hamkins, Large cardinals need not be large in HOD, Ann. Pure Appl. Logic 166 (2015), 1186-1198.
- [8] J. Cummings, M. Foreman and M. Magidor, Squares, scales, and stationary reflection, J. Math. Logic 1 (2001), 35-98.
- [9] M. Foreman and M. Magidor, A very weak square principle, J. Symbolic Logic 62 (1997), 175-196.
- [10] S.-D. Friedman, Large cardinals and L-like universes, in: Set Theory: Recent Trends and Applications, A. Andretta (ed.), Quaderni Mat. 17, Seconda Univ. Napoli, 2006, 93-110.
- [11] G. Fuchs, J. D. Hamkins and J. Reitz, Set-theoretic geology, Ann. Pure Appl. Logic 166 (2015), 464-501.
- [12] J. D. Hamkins, Extensions with the approximation and cover properties have no new large cardinals, Fund. Math. 180 (2003), 257-277.
- [13] J. D. Hamkins, Gap forcing, Israel J. Math. 125 (2001), 237-252.
- [14] J. D. Hamkins, Gap forcing: generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264-272.
- [15] J. D. Hamkins, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103-146.
- [16] T. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
- [17] Y. Kimchi and M. Magidor, The independence between the concepts of compactness and supercompactness, circulated manuscript.
- [18] M. Magidor, On the existence of nonregular ultrafilters and the cardinality of ultrapowers, Trans. Amer. Math. Soc. 249 (1979), 97-111.
- [19] T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.
- [20] J. Reitz, The Ground Axiom, J. Symbolic Logic 72 (2007), 1299-1317.
- [21] S. Shelah, Diamonds, Proc. Amer. Math. Soc. 138 (2010), 2151-2161.
- [22] W. H. Woodin, In search of ultimate-L: the 19th Midrasha Mathematicae Lectures, Bull. Symbolic Logic 23 (2017), 1-109.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90d11d48-f932-4cb1-a7b0-fa8ad3ab1ce8