PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. Methods: The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. Results: The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion – in contrast to the sample without any modification. Conclusions: Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
Rocznik
Strony
73--78
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Technical University of Lodz, Lodz, Poland
  • Department of Prosthodontics, Medical University of Lodz, Lodz, Poland
  • Department of General Dentistry, Medical University of Lodz, Lodz, Poland
Bibliografia
  • [1] Amato L.E., Lopez D.A., Galliano P.G., Cere S.M., Electrochemical characterization of sol–gel hybrid coatings in cobalt-based alloys for orthopedic implants. Mater Lett, 2005; 59: 2026–2031.
  • [2] ASTM F-86 Standard Practice for Surface Preparation and Marking for Surgical Implants.
  • [3] Chang J-Ch., Oshid Y., Gregory R.L., Andres C.J., Barco T.M., Brown D.T., Electrochemical study on microbiology-related corrosion of metallic dental materials. BioMed Mater Eng, 2003;13: 281–295.
  • [4] Cheng X., Ma H., Chen Sh., Niu L., Lei Sh., Yu R., Yao Z., Electrochemical behavior of chromium in acid solutions with H2S. Corros Sci, 1999; 41: 773-788.
  • [5] De Nardo L., Altomare L., Del Curto B.,Cigada A. and Draghi L.: Electrochemical surface modifications of titanium and titanium alloys for biomedical applications, Titanium and titanium alloys for biomedical applications, Woodhead Publishing Limited,( 2012) 106- 142.
  • [6] Eschler P.Y., Reclaru L., Luthy H., Blatter A., Larue C., Susz C., Bosch J., Corrosion Testing of Cobalt-Chromium Dental Alloys doped with Precious Metals. Eur Cells Mater, 2005; 9: 64-65.
  • [7] Gerstorfer J.G., Sauer K.H., Passler K., Ion release from Ni–Cr–Mo and Co–Cr–Mo casting alloys. Int J Prosthodont, 1991; 4: 152–158.
  • [8] Głogocka D., Noculak A., Pucińska J., Jopek W.,Podbielska H., Langner M., Przybyło M.: Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy, Acta of Bioengineering and Biomechanics Vol. 17, No. 3, (2015), 33-40.
  • [9] Guo F., Dong G., Dong L.: High temperature passive film on the surface of Co–Cr– Mo alloy and its tribological properties, Applied Surface Science 314 (2014) 777–785.
  • [10] Kedici S.P., Abbasaksu A., Alikili M., Arslan C., Bayramog G., Gokdemir K., Corrosion behavior of dental metals and alloys in different media. J Oral Rehabil, 1998; 25: 800–808
  • [11] Khelfaoui Y., Kerkar M., Bali A., Dalard F., Electrochemical characterization of a PVD film of titanium on AISI 316L stainless steel. Surf Coat Tech, 2006; 200: 4523–4529.
  • [12] Kiel-Jamrozik M., Szewczenko J.,Basiaga M., Nowińska K.: Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy, Acta of Bioengineering and Biomechanics Vol. 17, No. 1, (2015), 31-37.
  • [13] Kocijan A., Milosev I., Pihlar B.:Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis, Journal of Materials Science: Materials in Medicine 15 (2004) 643-650.
  • [14] Manaranche C., Hornberger H., A proposal for the classification of dental alloys according to their resistance to corrosion. Dent Mater, 2007; 23: 1428–1437.
  • [15] Metallic biomaterials: types and advanced applications, New functional biomaterials for medicine and healthcare, Woodhead Publishing Limited, (2014) 121-148.
  • [16] Metikos-Hukovic M., Babic R., Passivation and corrosion behaviours of cobalt and cobalt–chromium–molybdenum alloy. Corros Sci, 2007; 49: 3570–3579.
  • [17] Milosev I., Strehblow H.H., The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim Acta, 2003; 48: 2767-/2774.
  • [18] Milosev I.:The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions , Electrochimica Acta 78 (2012) 259– 273.
  • [19] Nagai A., Tsutsumi Y., Suzuki Y., Katayama K., Hanawa T., Yamashita K.: Characterization of air-formed surface oxide film on a Co–Ni–Cr–Mo alloy(MP35N) and its change in Hanks solution, Applied Surface Science 258 (2012) 5490– 5498.
  • [20] Nascimento M.L., Mueller W-D., Carvalho A.C., Tomas H., Electrochemical characterization of cobalt-based alloys using the mini-cell system. Dent Mater, 2007; 23: 369–373.
  • [21] Nouri A.,Wen C.: Introduction to surface coating and modification for metallic biomaterials. Surface Coating and Modification of Metallic Biomaterials, 2015 Elsevier Ltd., 1-60.
  • [22] Ordine A., Achete C.A., Mattos O.R., Magnetron sputtered SiC coatings as corrosion protection barriers for steels. Surf Coat Tech, 2000; 133-134: 583-588.
  • [23] Reimann Ł.: Electrochemical characteristics of a cobalt alloy with a protective passive layer, Proof-Reading Service.com, (2016)
  • [24] Ries L.A.S., Da Cunha Belo M., Ferreira M.G.S., Muller I.L., Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution. Corros Sci, 2008; 50: 676–686.
  • [25] Riviere J.P., Delafond J., Misaelides P., Corrosion protection of an AISI 321 stainless steel by SiC coatings. Surf Coat Tech, 1998; 100-101: 243-246.
  • [26] Santavirta S., Takagi M., Nordsletten L., Anttila A., Lappalainen R., Konttinen Y.T., Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material. Arch Orthop Trauma Surg, 1998; 118: 89-91.
  • [27] Schmalz G., Garhammer P., Biological interactions of dental cast alloys with oral tissues., Dent Mater, 2002; 18: 396–406.
  • [28] Singh R., Dahotre Narendra B., Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci: Mater Med, 2007; 18: 725–751.
  • [29] Vafaeian S., Fattah-alhosseini A., Keshavarz M.K., Mazaheri Y.: The influence of cyclic voltammetry passivation on the electrochemical behaviour of fine and coarse-grained AISI 430 ferritic stainless steel in an alkaline solution, Journal of Alloys and Compounds 677 (2016)
  • [30] Wataha J,C., Biocompatibility of dental casting alloys: A review. J Prosth Dent, 2000; 83: 223-234.
  • [31] Williams D.F., Biocompatibility of Clinical Implant Materials. vol. I, CRC Press, Boca Raton, FL, 1981.
  • [32] Yan Y., Neville A., Dowson D., Biotribocorrosion of CoCrMo orthopaedic implant materials - Assessing the formation and effect of the biofilm. Tribol Int, 2007; 40: 1492–1499.
  • [33] Zhang Y.S., Zhu X.M., Liu M., Che R.X., Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al- 5Cr Alloy. Appl Surf Sci, 2004; 222: 89–101.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90d0e540-b289-4d9e-8aff-d288b6a76c97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.