PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of service environment and pre‑deformation on the fatigue behaviour of 2524 aluminium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of service environment and pre-deformation on the fatigue behaviour of 2524 alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fatigue tests. The results indicate that the fatigue crack-growth rate (FCGR) of the alloy in an aqueous environment increases with temperature ranging from 0 to 90 °C. At the same stress intensity factor range (ΔK), the FCGR of the alloy in an argon environment is the smallest, followed by that in air, and a 3.5% NaCl fog environment, while that in an exfoliation corrosion (EXCO) solution is the largest. A pre-deformation of 2% can significantly enhance the fatigue crack propagation resistance of this alloy in argon, air, and 3.5% NaCl fog environments, while 5% pre-deformation weakens the fatigue crack propagation resistance of the alloy accordingly. The pre-deformation effect on the FCGR of alloy in the EXCO solution environment is limited.
Rocznik
Strony
56--71
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult‑to‑Cut Material, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
  • Hunan Provincial Key Defense Laboratory of High Temperature Wear‑Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult‑to‑Cut Material, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
  • Hunan Provincial Key Defense Laboratory of High Temperature Wear‑Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • School of Materials Science and Engineering, Central South University, Changsha 410083, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult‑to‑Cut Material, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Defense Laboratory of High Temperature Wear‑Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult‑to‑Cut Material, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
  • Hunan Provincial Key Defense Laboratory of High Temperature Wear‑Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
Bibliografia
  • [1] Shou WB, Yi DQ, Liu HQ, Tang C, Shen FH, Wang B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch Civ Mech Eng. 2019;19:287–96.
  • [2] Patankar MS, Taylor JC. MRM training, evaluation, and safety management. Int J Aviat Psychol. 2008;18(1):61–71.
  • [3] Nováková L, Boháčová M, Homola P. Application of material analysis and eddy current conductivity tests to aircraft accident investigation. Eng Fail Anal. 2015;56:422–8.
  • [4] Kermanidis AT, Zervaki AD, Haidemenopoulos GN, Pantelakis SG. The influence of salt fog exposure on the fatigue performance of Alclad 6xxx aluminum alloys laser beam welded joints. J Mater Sci. 2010;45(16):4390–400.
  • [5] Vasco MC, Chamos AN, Pantelakis SG. Effect of environment’s aggressiveness on the corrosion damage evolution and mechanical behavior of AA 2024-T3. Fatigue Fract Eng Mater Struct. 2017;40(7):1551–61.
  • [6] Song H, Bai Z, Zhang H, Niu Y, Leen SB. Effect of pre-corrosion on damage evolution and crack propagation in aluminum alloy 7050-T7651. Fatigue Fract Eng Mater Struct. 2018;41:2376–90.
  • [7] Gamboni OC, Moreto JA, Bonazzi LHC, Ruchert COFT, Filho BWW. Effect of salt-water fog on fatigue crack nucleation of Al. and Al–Li alloys. Mater Res. 2014;17(1):250–4. 8. Zhu X, Jones JW, Allison JE. Effect of frequency, environment, and temperature on fatigue behavior of E319 cast-aluminum alloy: small-crack propagation. Metall Mater Trans A. 2008;39(11):2666–80.
  • [9] Piascik RS, Willard SA. The growth of small corrosion fatigue cracks in alloy 2024. Fatigue Fract Eng Mater Struct. 2010;17(11):1247–59.
  • [10] Moreto JA, Broday EE, Rossino LS, Fernandes JCS, Bose Filho WW. Effect of localized corrosion on fatigue–crack growth in 2524-T3 and 2198-T851 aluminum alloys used as aircraft materials. J Mater Eng Perform. 2018;27(4):1917–26.
  • [11] Ambat R, Dwarakadasa ES. The influence of pH on the corrosion of medium strength aerospace alloys 8090, 2091 and 2014. ChemInform. 1992;23(26):681–90.
  • [12] Burns JT, Kim S, Gangloff RP. Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu. Corros Sci. 2010;52(2):498–508.
  • [13] Burns JT, Gangloff RP. Effect of low temperature on fatigue crack formation and microstructure-scale growth from corrosion damage in Al–Zn–Mg–Cu. Metall Mater Trans A. 2013;44:2083–105.
  • [14] Li K, Xiong J, Ma S, Chen B. Contrast tests on fatigue properties of aluminum alloys 2E12-T3 and 7050-T7451 in pudding environment of fuel tank. J Aeronaut Mater. 2017;37(01):65–72.
  • [15] Suresh S, Zamiski F, Ritchie RO. Oxide-induced crack closure: an explanation for near-threshold corrosion fatigue crack growth behaviour. Metall Trans A. 1981;12:1435–43.
  • [16] An L, Cai Y, Liu W, Liu S, Zhu SQ, Meng FC. Effect of predeformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermomechanical treatment. Trans Nonferr Met Soc China. 2012;22(2):370–5.
  • [17] Wang H, Yi Y, Huang S. Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings. J Alloys Compd. 2016;685:941–8.
  • [18] Yi DQ, Yang S, Deng B, Zhou MZ. Effect of pre-strain on fatigue crack growth of 2E12 aluminum alloy. Trans Nonferr Met Soc China. 2007;17(1):141–4.
  • [19] Jahn MT, Jen MBG. Effects of TAHA treatments on the fatigue life of a 7075 aluminium alloy. J Mater Sci. 1986;21:799–802.
  • [20] Wang GS, Blom AF. Effect of large local plastic flow on the fatigue life of metallic materials. Rodiology. 2005;107(3):711–2.
  • [21] Chen Y, Zhou J, Liu C, Wang F. Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. Int J Fatigue. 2018;108:35–46.
  • [22] Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Jiang B. Semiquantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets. Mater Sci Eng A. 2016;675:386–95.
  • [23] Majzoobi GH, Kashfi M, Bonora N, Iannitti G, Ruggiero A, Khademi E. Damage characterization of aluminum 2024 thin sheet for different stress triaxialities. Arch Civ Mech Eng. 2018;18:702–12.
  • [24] Yin D, Liu H, Chen Y, Yi D, Wang B, Wang B, Shen F, Fu S, Tang C, Pan S. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy. Int J Fatigue. 2016;84:9–16.
  • [25] Burns JT, Gupta VK, Agnew SR, Gangloff RP. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al–Zn–Mg–Cu alloys. Int J Fatigue. 2013;55(7):268–75.
  • [26] Vasudévan AK, Suresh S. Influence of corrosion deposits on nearthreshold fatigue crack growth behavior in 2xxx and 7xxx series aluminum alloys. Metall Trans A. 1982;13(12):2271–80.
  • [27] Tong ZX, Lin S, Hsiao CM. The influence of water vapor on the fatigue crack propagation kinetics in pure aluminum single crystals. Metall Trans A. 1989;20(5):925–33.
  • [28] Pokluda J. Dislocation-based model of plasticity and roughnessinduced crack closure. Int J Fatigue. 2013;46(1):35–40.
  • [29] Menan F, Henaff G. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024. Int J Fatigue. 2009;31:1684–95.
  • [30] Chen YQ, Zhang H, Song WW, Pan SP, Liu WH, Liu X, Zhu BW, Song YF, Zhou W. Acceleration effect of a graphite dust environment on the fatigue crack propagation rates of Al alloy. Int J Fatigue. 2019;126:20–9.
  • [31] Wanhill RJH. Fractography of fatigue crack propagation in 2024-T3 and 7075-16 aluminum alloys in air and vacuum. Metall Trans A. 1975;6(8):1587–96.
  • [32] Piascik RS, Gangloff RP. Environmental fatigue of an Al–Li–Cu alloy: part I. Intrinsic crack propagation kinetics in hydrogenous environments. Metall Trans A. 1991;22:2415–28.
  • [33] Zhang X, Wang HW, Xu S, He W. Investigation on corrosion behaviors of aluminum alloy in NaCl and EXCO solution, multidiscipline model. Mater Struct. 2013;9(3):359–66.
  • [34] Chen YQ, Pan SP, Liu WH, Liu X, Tang CP. Morphologies, orientation relationships, and evolution of the T-phase in an Al–Cu–Mg–Mn alloy during homogenisation. J Alloys Compd. 2017;709:213–26.
  • [35] Chen YQ, Pan SP, Zhu BX, Liu X, Liu WH, Tang CP. The evolution of orientation relationships during the transformation of a twin-free T-particle to tenfold T-twins in an Al alloy during homogenisation. Mater Charact. 2018;141:59–73.
  • [36] Chen JQ, Liu C, Lia QL, Zhao HJ. A three-dimensional characterization method for the preferentially oriented precipitation of Ω-phase in stress-aged Al–Cu–Mg–Ag single crystal. Mater Charact. 2019;153:184–9.
  • [37] Chen JQ, Deng YL, Guo XB. Revisit the stress-orienting effect of θ′ in Al–Cu single crystal during stress aging. Mater Charact. 2018;135:270–7.
  • [38] Zhang XL, Xu X, Ling ZY, Wei J, Cheng T, Zhao JJ. Effect of pre-deformation on microstructure and properties of ultra-highstrength aluminum alloy extrusion materials. Chin J Nonferr Met. 2016;26(3):507–15.
  • [39] Li C, Zheng X, Dan Z, Tian Y, Song J, Chen L. Effects of predeformation on microstructure and mechanical properties of semisolid 7075 alloy. Heat Treat Met. 2016;41(2):127–31.
  • [40] Chen JQ, Li SC, Cong HL, Yin ZM. Microstructure and mechanical behavior of friction stir-welded Sc-modified Al–Zn–Mg alloys made using different base metal tempers. J Mater Eng Perform. 2019;28:916–25.
  • [41] Song RG, Dietzel W, Zhang BJ, Liu WJ, Tseng MK, Atrens A. Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy. Acta Mater. 2004;52:4727–43.
  • [42] Wu J, Guo R, Li H, Zhang S. Effects of biaxial pre-stretching on microstructures and mechanical properties of 2024 aluminum alloy thin plates. Appl Mech Mater. 2014;472:607–11.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90ce2f24-ffc4-41ee-bef8-0915931b4b53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.