PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid cardiovascular simulator as a tool for physical reproduction of the conditions prevailing in the apex of the heart

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of research focused on the adaptation of a hybrid simulator of the human circulatory system to the physical reproduction of the haemodynamic conditions prevailing in the apex of the heart. This report describes the principle of operation of the hybrid simulator and presents two methods of its modification. The work includes analysis of the algorithm verification and describes problems that appeared during research. A comparison of the results obtained for both modification methods is shown, as well as preliminary simulation results for a constant-flow ventricle assist device joined to the hybrid simulator operating in the apex of the heart-aorta configuration.
Twórcy
autor
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warsaw, Poland
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warsaw, Poland
autor
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
autor
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • [1] Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997;349:1498–504. http://dx.doi.org/10.1016/S0140-6736(96)07492-2.
  • [2] Górczyńska K. Circulatory assistance basic classification of heart assistance methods and devices. Biocybern Biomed Eng 2011;31:3–15. http://dx.doi.org/10.1016/S0208-5216(11)70001-8.
  • [3] Pałko T, Kozarski M, Darowski M, Szczepanowski A, Łukasik W, Zieliński K, et al. Urządzenie do kontrapulsacji nieinwazyjnej. Biul Urzędu Pat 2011;10:5.
  • [4] Werner D, Schneider M, Weise M, Nonnast-Daniel B, Daniel WG. Pneumatic external counterpulsation: a new noninvasive method to improve organ perfusion. Am J Cardiol 1999;84:950–2.
  • [5] Jaquiss RDB, Imamura M. Implantation of a Berlin Heart ventricular assist device. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2011;14:120–5. http://dx.doi.org/10.1053/j.pcsu.2011.01.009.
  • [6] Timms D. A review of clinical ventricular assist devices. Med Eng Phys 2011;33:1041–7. http://dx.doi.org/10.1016/j.medengphy.2011.04.010.
  • [7] Pacholewicz J, Zakliczynski M, Baranska-Kosakowska A, Religa G, Siondalski P, Kucewicz E, et al. 93: Efficacy of treatment with pulsatile pump as a bridge to transplantation in patients with a congestive heart failure – Polish experiences with POLVAD. J Heart Lung Transpl 2009;28:S98. http://dx.doi.org/10.1016/j.healun.2008.11.770.
  • [8] Liu Y, Allaire P, Wood H, Olsen D. Design and initial testing of a mock human circulatory loop for left ventricular assist device performance testing. Artif Organs 2005;29:341–5. http://dx.doi.org/10.1111/j.1525-1594.2005.29058.x.
  • [9] Pantalos GM, Koenig SC, Gillars KJ, Giridharan GA, Ewert DL. Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J 2004;50:37–46. http://dx.doi.org/10.1097/01.MAT.0000104818.70726.E6.
  • [10] Cygan S, Werys K, Błaszczyk Ł, Kubik T, Kałuzyński K. Left ventricle phantom and experimental setup for MRI and echocardiography – preliminary results of data acquisitions. Biocybern Biomed Eng 2014;34:19–24. http://dx.doi.org/10.1016/j.bbe.2013.12.002.
  • [11] Rosenberg G, Phillips WM, Landis DL, Pierce WS. Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO J (Am Soc Artif Intern Organs 1992) 1981;4:41–9.
  • [12] Baloa LA, Boston JR, Antaki JF. Elastance-based control of a mock circulatory system. Ann Biomed Eng 2001;29:244–51.
  • [13] Ferrari G, De Lazzari C, Kozarski M, Clemente F, Górczyńska K, Immo R, et al. A hybrid mock circulatory system: testing a prototype under physiologic and pathological conditions. ASAIO J 2002;48:487–94. http://dx.doi.org/10.1097/01.MAT.0000026350.66193.B0.
  • [14] Ferrari G, Kozarski M, De Lazzari C, Górczyńska K, Mimmo R, Guaragno M, et al. Modelling of cardiovascular system: development of a hybrid (numerical–physical) model. Int J Artif Organs 2003;26:1104–14.
  • [15] Ferrari G, Kozarski M, Pałko KJ, Zieliński K. Role and applications of circulatory models in cardiovascular pathophysiology. Biocybern Biomed Eng 2009;29:3–24.
  • [16] Darowski M, Kozarski M, Ferrari G, Zieliński K, Górczyńska K, Szczepanowski A, et al. A new hybrid (hydro-numerical) model of the circulatory system. Bull Pol Acad Sci Tech Sci 2013;61:993–1003. http://dx.doi.org/10.2478/bpasts-2013-0107/.
  • [17] Kozarski M, Ferrari G, Zieliński K, Górczyńska K, Pałko KJ, Fresiello L, et al. A hybrid (hydro-numerical) cardiovascular model: application to investigate continuous-flow pump assistance effect. Biocybern Biomed Eng 2012;32:77–91. http://dx.doi.org/10.1016/S0208-5216(12)70051-7.
  • [18] Fresiello L, Zieliński K, Jacobs S, Di Molfetta A, Pałko KJ, Bernini F, et al. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Artif Organs 2014;38:456–68. http://dx.doi.org/10.1111/aor.12178.
  • [19] Ferrari G. Study of artero-ventricular interaction as an approach to the analysis of circulatory physiopathology: methods, tools and applications. Rome, Italy: Consiglio Nazionale delle Ricerche; 2008.
  • [20] Ferrari G, De Lazzari C, Kozarski M, Darowski M. Hybrid (numerical–physical) circulatory models: description and possible applications. First IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2006. BioRob 2006. IEEE; 2006. p. 249–53. http://dx.doi.org/10.1109/BIOROB.2006.1639094.
  • [21] Ferrari G, Kozarski M, De Lazzari C, Górczyńska K, Darowski M, Tosti G. Development of a hybrid (numerical–physical) models of the cardiovascular system: numerical–electrical and numerical hydraulic applications. Biocybern Biomed Eng 2005;25:3–15.
  • [22] Costanzo L. Board review series: physiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
  • [23] Darowski M, Klonowski W, Kozarski M, Ferrari G, Zieliński K, Stępień R. Hybrid modeling of biomedical systems and measuring nonlinear characteristics of biosignals for improving quality of life. Metrol Meas Syst 2007;14:89–100.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90cb9535-6160-453e-a24c-5ea7a9043997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.