PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Luminescence Dating of Fluvial Deposits in the Rock Shelter of Cueva Antón, Spain

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fluvial sediments at Cueva Antón, a Middle Palaeolithic rock shelter located in the valley of the River Mula (Southeast Spain), produced abundant lithic assemblages of Mousterian affinities. Radiocarbon dates are available for the upper part of the archaeological succession, while for the middle to lower parts chronometric data have been missing. Here we present luminescence dating results for these parts of the succession. Quartz OSL on small aliquots and single grain measurements yield ages ranging from 69 ± 7 ka to 82 ± 8 ka with a weighted mean of 72 ± 4 ka for sub-complexes AS2 to AS5. Equivalent dose estimates from large aliquots were highest and inconsistent with those from single grains and small multiple grain aliquots. This is probably caused by the presence of oversaturating grains, which have been quantified by single grain measurements. Additional post-IR IRSL measurements on coarse grained feldspar give strong support to a well-bleached quartz OSL signal. While independent chronometric control is missing, the results are within the expected age range and support the notion of a rapid accumulation of the fluvial deposits.
Wydawca
Czasopismo
Rocznik
Strony
107--125
Opis fizyczny
Bibliogr. 108 poz., rys.
Twórcy
autor
  • University of Cologne, Institute of Geography, Albertus-Magnus-Platz, 50923 Cologne, Germany
autor
  • University of Cologne, Institute of Geography, Albertus-Magnus-Platz, 50923 Cologne, Germany
autor
  • University of Cologne, Institute of Geography, Albertus-Magnus-Platz, 50923 Cologne, Germany
  • Neanderthal Museum, Talstraße 300, 40822 Mettmann, Germany
  • University of Cologne, Institute of Prehistoric Archaeology, Albertus-Magnus-Platz, 50923 Cologne, Germany
  • Dipartimento di Lettere e Filosofia, Università degli Studi di Trento, via Tommaso Gar 14, 38122 Trento, Italy
  • Departament de Prehistòria i d'Arqueologia, Universitat de València, Av. Blasco Ibañez 28, 46010 València, Spain
autor
  • Área de Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
autor
  • Seminari d’Estudis i Recerques Prehistòriques, Departament de Prehistòria, Història Antiga i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona/ICREA, Spain
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London.
  • 2. Angelucci DE, Anesin D, Susini D, Villaverde V, Zapata J and Zilhão J, 2013. Formation processes at a high resolution Middle Paleolithic site: Cueva Antón (Murcia, Spain). Quaternary International 315: 24–41, DOI 10.1016/j.quaint.2013.03.014.
  • 3. Arnold LJ and Roberts RG, 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4: 204–230, DOI 10.1016/j.quageo.2008.12.001.
  • 4. Arnold LJ, Demuro M and Navazo Ruiz M, 2012. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-gran OSL measurements. Radiation Measurements 47: 652–658, DOI 10.1016/j.radmeas.2012.02.005.
  • 5. Auclair M, Lamothe M and Hout S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37: 487–492, DOI 10.1016/S1350-4487(03)00018-0.
  • 6. Bailey RM, 2003. Paper I: The use of measurement-time dependent single-aliquot equivalent-dose estimates from quartz in the identification of incomplete signal resetting. Radiation Measurements 37: 673–683, DOI 10.1016/S1350-4487(03)00078-7.
  • 7. Bailey RM, 2004. Paper I – simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements 38: 299–310, DOI 10.1016/j.radmeas.2003.09.005.
  • 8. Ballarini M, Wintle AG and Wallinga J, 2006. Spatial variation of dose rate from beta sources as measured using single grains. Ancient TL 24(1): 1–8.
  • 9. Bøtter-Jensen L, 1997. Luminescence techniques: instrumentation and methods. Radiation Measurements 27(5/6): 749–768, DOI 10.1016/S1350-4487(97)00206-0.
  • 10. Bøtter-Jensen L, Duller GAT, Murray AS and Banerjee D, 1999. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiation Protection Dosimetry 84: 335–340.
  • 11. Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32: 523–528, DOI 10.1016/S1350-4487(00)00039-1.
  • 12. Bøtter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535– 541, DOI 10.1016/S1350-4487(03)00020-9.
  • 13. Bøtter-Jensen L, Thomsen KJ and Jain M, 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45: 253–257, DOI 10.1016/j.radmeas.2009.11.030.
  • 14. Brock F, Higham T, Ditchfield P and Ramsey CB, 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1): 103– 112.
  • 15. Buylaert J-P, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
  • 16. Buylaert J-P, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41: 435–451, DOI 10.1111/j.1502-3885.2012.00248.x.
  • 17. Chang H-C and Wang L-C, 2010. A simple proof of Thue’s Theorem on Circle Packing. WEB site: <http://arxiv.org/pdf/1009.4322v1.pdf>. Accessed 2014 July 24.
  • 18. Cunningham AC, Wallinga J and Minderhoud PSJ, 2011. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38(4): 424–431, DOI 10.2478/s13386-011-0048-z.
  • 19. Cayre O, Lancelot Y and Vincent E, 1999. Paleoceanographic reconstruction from planktonic foraminifera off the Iberian Margin: Temperature, salinity, and Heinrich events. Paleoceanography 14(3): 384–396, DOI 10.1029/1998PA900027.
  • 20. Demuro M, Roberts RG, Froese DG, Arnold LJ, Brock F and Bronk Ramsey C, 2008. Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: Comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra. Quaternary Geochronology 3: 346–364, DOI 10.1016/j.quageo.2007.12.003.
  • 21. Demuro M, Arnold LJ, Froese DG and Roberts RG, 2013. OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: Dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates. Quaternary Geochronology 15: 67–87, DOI 10.1016/j.quageo.2012.11.003.
  • 22. Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161– 165, DOI 10.1016/S1350-4487(02)00170-1.
  • 23. Duller GAT, 2006. Single grain optical dating of glacigenic deposits. Quaternary Geochronology 1: 296–304, DOI 10.1016/j.quageo.2006.05.018.
  • 24. Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37: 589– 612, DOI 10.1111/j.1502-3885.2008.00051.x.
  • 25. Duller GAT, 2012. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiation Measurements 47: 770– 777, DOI 10.1016/j.radmeas.2012.01.006.
  • 26. Duller GAT, Bøtter-Jensen L, Murray AS and Truscott AJ, 1999. Single grain laser luminescence (SGLL) measurements using a novel automated reader. Nuclear Instruments and Methods in Physics Research B 155: 506–514, DOI 10.1016/S0168-583X(99)00488-7.
  • 27. Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sand-sized grains of quartz: sources of variability. Radiation Measurements 32: 453–457, DOI 10.1016/S1350-4487(00)00055- X.
  • 28. Dunne J, Elmore D and Muzikar P, 1999. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27: 3–11, DOI 10.1016/S0169-555X(98)00086-5.
  • 29. Fletcher WJ and Sánchez Goñi MF, 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70: 451–464, DOI 10.1016/j.yqres.2008.07.002.
  • 30. Galbraith RF, 1988. Graphical Display of Estimates Having Differing Standard Errors. Technometrics 30(3): 271–281, DOI 10.1080/00401706.1988.10488400.
  • 31. Galbraith RF, 2003. A simple homogeneity test for estimates of dose obtained using OSL. Ancient TL 21(2): 75–77.
  • 32. Galbraith RF and Green PF, 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17(3): 197–206, DOI 10.1016/1359-0189(90)90035-V.
  • 33. Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020.
  • 34. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I, Experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
  • 35. Galbraith RF, Roberts RG and Yoshida H, 2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment. Radiation Measurements 39: 289–307, DOI 10.1016/j.radmeas.2004.03.023.
  • 36. Grootes PM, Stuiver M, White JWC, Johnsen S and Jouzel J, 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552–554, DOI 10.1038/366552a0.
  • 37. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29(1): 5–8.
  • 38. Guérin G, Murray AS, Jain M, Thomsen KJ and Mercier N, 2013. How confident are we in the chronology of the transition between Howieson’s Poort and Still Bay? Journal of Human Evolution 64: 314– 317, DOI 10.1016/j.jhevol.2013.01.006.
  • 39. Heer AJ, Adamiec G and Moska P, 2012. How many grains are there on a single aliquot? Ancient TL 30(1): 9–16.
  • 40. Hemming SR, 2004. Heinrich Events: Massive Late Pleistocene detritus layer of the north Atlantic and their global climate imprint. Reviews of Geophysics 42: RG1005, DOI 10.1029/2003RG000128.
  • 41. Higham T, 2011. European Middle to Upper Palaeolithic radiocarbon dates are often older than they look: Problems with previous dates and some remedies. Antiquity 85(327): 235–249.
  • 42. Higham T, Brock F, Peresani M, Broglio A, Wood R and Douka K, 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28: 1257– 1267, DOI 10.1016/j.quascirev.2008.12.018.
  • 43. Huang W and Ye T, 2011. Global optimization method for finding dense packings of equal circles in a circle. European Journal of Operational Research 210(3): 474–481, DOI 10.1016/j.ejor.2010.11.020.
  • 44. Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15(1): 11–13.
  • 45. Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in Kfeldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38: 1093–1106, DOI 10.1139/cjes-38-7-1093.
  • 46. Huntley DJ, Godfrey-Smith DI and Thewalt MLW, 1985. Optical dating of sediments. Nature 313: 105–107, DOI 10.1038/313105a0.
  • 47. IGME, 1972. Mapa Geológico de España. Escala 1:50.000. 912(26-36). Mula. Instituto Geológico y Minero de España, Madrid.
  • 48. Jacobs Z and Roberts RG, 2007. Advances in Optically Stimulated Luminescence Dating of Individual Grains of Quartz from Archeological Deposits. Evolutionary Anthropology 16: 210–223, DOI 10.1002/evan.20150.
  • 49. Jacobs Z, Duller GAT and Wintle AG, 2003. Optical dating of dune sand from Blombos Cave, South Africa: II – single grain data. Journal of Human Evolution 44: 613–625, DOI 10.1016/S0047- 2484(03)00049-6.
  • 50. Jain M, Murray AS and Bøtter-Jensen L, 2004. Optically stimulated luminescence dating: how significant is incomplete light exposure in fluvial environments?. Quaternaire 15(1/2): 143–157.
  • 51. Jöris O and Street M, 2008. At the end of the 14C time scale – the Middle to Upper Paleolithic record of western Eurasia. Journal of Human Evolution 55: 782–802, DOI 10.1016/j.jhevol.2008.04.002.
  • 52. Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating – tests on samples in field saturation. Radiation Measurements 43: 786–790, 10.1016/j.radmeas.2008.01.021.
  • 53. Kars RH, Busschers FS and Wallinga J, 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 74–86, DOI 10.1016/j.quageo.2012.05.001.
  • 54. Klasen N, Fiebig M, Preusser F, Reitner JM and Radtke U, 2007. Luminescence dating of proglacial sediments from the Eastern Alps. Quaternary International 164–165: 21–32, DOI 10.1016/j.quaint.2006.12.003.
  • 55. Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M and Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30(1): 1–8.
  • 56. Lai ZP, Zöller L, Fuchs M and Brückner H, 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements 43: 767–770, DOI 10.1016/j.radmeas.2008.01.022.
  • 57. Lapp T, Jain M, Thomsen KJ, Murray AS and Buylaert J-P, 2012. New luminescence measurement facilities in retrospective dosimetry. Radiation Measurements 47: 803–808, DOI 10.1016/j.radmeas.2012.02.006.
  • 58. Lomax J, 2009. Palaeodunes as archives of environmental change – A case study from the western Murray Basin (South Australia) based on optically stimulated luminescence (OSL) dating of single and multiple grains of quartz. Ph.D. Thesis, University of Cologne, Germany: 265pp.
  • 59. Lowick SE, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003.
  • 60. Maroto J, Vaquero M, Arrizabalaga Á, Baena J, Baquedano E, Jordá J, Julià R, Montes R, van der Plicht J, Rasines P and Wood R, 2012. Current issues in late Middle Palaeolithic chronology: New assessments from Northern Iberia: The Neanderthal Home: spatial and social behaviours. Quaternary International 247: 15–25, DOI 10.1016/j.quaint.2011.07.007.
  • 61. Martins AA, Cunha PP, Buylaert J-P, Huot S, Murray AS, Dinis P and Stokes M, 2010. K-feldspar IRSL dating of a Pleistocene river terrace staircase sequence of the Lower Tejo River (Portugal, western Iberia). Quaternary Geochronology 5: 176–180, DOI 10.1016/j.quageo.2009.06.004.
  • 62. Martínez C, 1997. El yacimiento musteriense de Cueva Antón (Mula, Murcia) (The Mousterian site of Cueva Antón (Mula, Murcia)). Memorias de Arqueología de la Región de Murcia 6: 18–47 (in Spanish).
  • 63. Medialdea A, Thomsen KJ, Murray AS and Benito G, 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22: 11–24, DOI 10.1016/j.quageo.2014.01.004.
  • 64. Meese DA, Gow AJ, Alley RB, Zielinski GA, Grootes PM, Ram M, Taylor KC, Mayewski PA and Bolzan JF, 1997. The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. Journal of Geophysical Research 102(C12): 26411–26423, DOI 10.1029/97JC00269.
  • 65. Mejdahl V, 1979. Thermoluminescence dating: beta attenuation in quartz grains. Archaeometry 21: 61–73, DOI 10.1111/j.1475- 4754.1979.tb00241.x.
  • 66. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 67. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377–381, DOI 10.1016/S1350-4487(03)00053- 2.
  • 68. Murray AS, Thomsen KJ, Masuda N, Buylaert JP and Jain M, 2012. Identifying well-bleached quartz using different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47: 688–695, DOI 10.1016/j.radmeas.2012.05.006.
  • 69. Nathan RP, Thomas PJ, Jain M, Murray AS and Rhodes EJ, 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37: 305–313, DOI 10.1016/S1350-4487(03)00008-8.
  • 70. Olley JM, Roberts RG and Murray AS, 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen’s cave, Nullarbor Plain, Australia: Implications for dose rate determinations. Radiation Measurements 27: 433–443, DOI 10.1016/j.jhevol.2013.01.006.
  • 71. Olley JM, Caitcheon G and Murray AS, 1998. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments. Quaternary Geochronology 17: 1033–1040, DOI 10.1016/S0277-3791(97)00090-5.
  • 72. Poolton NRJ, Wallinga J, Murray AS, Bulur E and Bøtter-Jensen L, 2002. Electrons in feldspar I: on the wavefunction of electrons trapped at simple lattice defects. Physics and Chemistry of Minerals 29: 210–216, DOI 10.1007/s00269-001-0217-3.
  • 73. Prescott JR and Hutton JT, 1988. Cosmic ray and gamma ray dosimetry for TL and ESR. Nuclear Tracks and Radiation Measurements 14(1/2): 223–227, DOI 10.1016/1359-0189(88)90069-6.
  • 74. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23(2/3): 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 75. Preusser F, Andersen BG, Denton GH and Schlüchter C, 2005. Luminescence chronology of Late Pleistocene glacial deposits in North Westland, New Zealand. Quaternary Science Reviews 24: 2207– 2227, DOI 10.1016/j.quascirev.2004.12.005.
  • 76. Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41: 871–877, DOI 10.1016/j.radmeas.2006.04.019.
  • 77. Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments – A test case from Darssingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6: 207– 222, DOI 10.1016/j.quageo.2010.10.001.
  • 78. Reimann T, Thomsen KJ, Jain M, Murray AS and Frechen M, 2012a. Single-grain dating of young sediments using the pIRIR signal from feldspar. Quaternary Geochronology 11: 28–41, DOI 10.1016/j.quageo.2012.04.016.
  • 79. Reimann T,Lindhorst S, Thomsen KJ, Murray AS and Frechen M, 2012b. OSL dating of mixed coastal sediment (Sylt, German Bight, North Sea). Quaternary Geochronology 11: 52–67, DOI 10.1016/j.quageo.2012.04.006.
  • 80. Rhodes EJ, 2007. Quartz single grain OSL sensitivity distributions: implications for multiple grain single aliquot dating. Geochronometria 26: 19–29, DOI 10.2478/v10003-007-0002-5.
  • 81. Rittenour TM, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37: 613–635, DOI 10.1111/j.1502-3885.2008.00056.x.
  • 82. Roberts HM, 2012. Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control. Radiation Measurements 47: 716–724, DOI 10.1016/j.radmeas.2012.03.022.
  • 83. Roberts RG, Galbraith RF, Yoshida H, Laslett GM and Olley JM, 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory dosed quartz. Radiation Measurements 32: 459–465, DOI 10.1016/S1350-4487(00)00104-9.
  • 84. Smedley RK, Duller GAT, Pearce NJG and Roberts HM, 2012. Determining the K-content of single-grains of feldspar for luminescence dating. Radiation Measurements 47: 790–796, DOI 10.1016/j.radmeas.2012.01.014.
  • 85. Sohbati R, Murray AS, Buylaert J-P, Ortuño M, Cunha PP and Masana E, 2012. Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) – a comparison between OSL, IRSL and post-IR IRSL ages. Boreas 41: 250–262, DOI 10.1111/j.1502-3885.2011.00230.x.
  • 86. Specht E, 2012. The best known packings of equal circles in a circle. WEB site: <http://www.packomania.com>. Accessed 2014 July 24.
  • 87. Spooner NA, 1992. Optical dating: preliminary results on the anomalous fading of luminescence from feldspars. Quaternary Science Reviews 11: 139–145, DOI 10.1016/0277-3791(92)90055-D.
  • 88. Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23: 625–632, DOI 10.1016/1350-4487(94)90111-2.
  • 89. Spooner NA and Allsop A, 2000. The spatial variation of dose-rate from 90Sr/90Y beta sources for use in luminescence dating. Radiation Measurements 32: 49–55, DOI 10.1016/S1350-4487(99)00252-8.
  • 90. Stone AEC and Bailey RM, 2012. The effect of single grain luminescence characteristics on single aliquot equivalent dose estimates. Quaternary Geochronology 11: 68–78, DOI 10.1016/j.quageo.2012.03.014.
  • 91. Thiel C, Buylaert J-P, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperaturę post-IR IRSL protocol. Quaternary International 234: 23–31, DOI 10.1016/j.quaint.2010.05.018.
  • 92. Thomsen KJ, Murray AS and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39: 47–61, DOI 10.1016/j.radmeas.2004.01.039.
  • 93. Thomsen KJ, Murray AS, Bøtter-Jensen L and Kinahan J, 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements 42: 370– 379, DOI 10.1016/j.radmeas.2007.01.041.
  • 94. Thomsen KJ, Bøtter-Jensen L, Jain M, Denby PM and Murray AS, 2008a. Recent instrumental developments for trapped electron dosimetry. Radiation Measurements 43: 414–421, DOI 10.1016/j.radmeas.2008.01.003.
  • 95. Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008b. Laboratory fading rates of various luminescence signals from feldsparrich sediment extracts. Radiation Measurements 43: 1474–1486, DOI 10.1016/j.radmeas.2008.06.002.
  • 96. Thomsen KJ, Murray AS and Jain M, 2011. Stability of IRSL signals from sedimentary K-feldspar samples. Geochronometria 38(1): 1– 13, DOI 10.2478/s13386-011-0003-z.
  • 97. Vasiliniuc Ş, Vandenberghe DAG, Timar-Gabor A, Panaiotu C, Cosma C and van den Haute P, 2012. Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess. Quaternary Geochronology 10: 75–80, DOI 10.1016/j.quageo.2012.02.014.
  • 98. Vegas J, Ruiz-Zapata B, Ortiz JE, Galán L, Torres T, García-Cortés A, Gil-García MJ, Pérez-González A and Gallardo-Millán JL, 2010. Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain). Journal of Quaternary Science 25(7): 1051–1062, DOI 10.1002/jqs.1262.
  • 99. Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31: 303–322, DOI 10.1111/j.1502- 3885.2002.tb01076.x.
  • 100. Wallinga J, Bos AJJ, Dorenbos P, Murray AS and Schokker J, 2007. A test case for anomalous fading correction in IRSL dating. Quaternary Geochronology 2: 216–221, DOI 10.1016/j.quageo.2006.05.014.
  • 101. Wintle AG, 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27(5/6): 769–817, DOI 10.1016/S1350-4487(97)00220-5.
  • 102. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001.
  • 103. Wood RE, Barroso-Ruíz C, Caparrós M, Jordá-Pardo JF, Santos BG and Higham TFG, 2013. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences of the United States of America 110(8): 2781–2786, DOI 10.1073/pnas.1207656110.
  • 104. Yoshida H, Roberts RG, Olley JM, Laslett GM and Galbraith RF, 2000. Extending the age range of optical dating using single ‘supergrains’ of quartz. Radiation Measurements 32: 439–446, DOI 10.1016/S1350-4487(99)00287-5.
  • 105. Zhao H and Li SH, 2005. Internal dose rate in K-feldspar grains from radioactive elements other than potassium. Radiation Measurements 40: 84–93, DOI 10.1016/j.radmeas.2004.11.004.
  • 106. Zilhão J and Villaverde V, 2008. The Middle Paleolithic of Murcia. Treballs d’Arqueologia 14: 229–248.
  • 107. Zilhão J, Angelucci DE, Badal-García E, d’Errico F, Daniel F, Dayet L, Douka K, Higham TFG, Martínez-Sánchez MJ, Montes-Bernárdez R, Murcia-Mascarós S, Pérez-Sirvent C, Roldán-Garcíaj C, Vanhaerenk M, Villaverdec V, Wood R and Zapata J, 2010. Symbolic use of marine shells and mineral pigments by Iberian Neandertals. Proceedings of the National Academy of Sciences of the United States of America 107(3): 1023–1028, DOI 10.1073/pnas.0914088107.
  • 108. Zilhão J, Angelucci DE, Burow C, Hilgers A, Kehl M, Villaverde V, Wood R and Zapata J, 2012. From Late Mousterian to Evolved Aurignacian: New Evidence for the Middle-to-Upper Paleolithic Transition in Mediterranean Spain. Abstracts European Society for the Study of Human Evolution, Bordeaux: 176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90cb586b-57e8-48a2-9c16-8a6648d412a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.