140 NAZDROWICZ: EXTRACTING AND UPDATING DATA PERFORMANCE DURING BULK NUMERICAL CALCULATIONS IN DATABASES

Extracting and Updating Data Performance
During Bulk Numerical Calculations in Databases

Jacek Nazdrowicz

Abstract—Nowadays, more complex engineering problems
need to carry out increasingly complex numerical calculations. In
order to obtain the results as soon as possible, engineers must
simplify the physical model on the one hand, apply appropriately
efficient infrastructure to carry out calculations on the other.
This infrastructure includes both hardware and software.
Problems in numerical calculations in scientific applications are
often caused by non-optimal front-end application -code
implementation or by ineffective system of scientific data
management at back-end. In this article author presents some
aspects of performance problems when relational database is
used as backend storage. Of course, the biggest problem in
numerical computation processing is that the large amount of
data stored on the storage area can slow down the entire
computing system and in turn directly affects the computational
efficiency. Presented examples come from simulated OLTP
(Online Transactional Processing) environments with large load
and many queries executed. These examples can reflect real
problems with data processing in numerical calculations on data
extracted from MSSQL Server database with large storage
system connected.

Index Terms—Aflat file, relational database, numerical methods,
data management, performance.

I. INTRODUCTION

HE problems of modern computing are mainly processing

and storage of huge amounts of data. Computer science,
which dominates in many areas has become a powerful tool
for solving complex engineering problems using numerical
methods.

Scientific numerical calculations require very effective,
high-performed system for data storage processing [1].
Currently, we have many solutions and technologies delivered
by many vendors for storing data. Hardware appliances with
appropriate resource, share protocols implemented, and
software processing data give us possibility to create well-
optimized, fast response data storage system.

Proper selection of the components making up the backend
storage is extremely important, because it directly affects the
performance of the entire system. This requires not only a
broad theoretical knowledge, but also the experience gained
from long-term follow-up characteristics of the performance
of individual components and the ability of correlation results.
Database is the most known component for storing processing
data. In some publications one can find its practical
applications [2][3][4]. In the paper [2] there are SQL-

J. Nazdrowicz is with the Department of Microelectronics and Computer
Science, Lodz University of Technology, Lodz, Poland (e-mail:
jnazdrowicz@dmcs.pl)

ISSN 2080-8755

compliant databases presented and benefits of using them in
FEM (Finite Elements Method) applications. In Microsoft
report [3] implementation of SQL Server with FEM front-end
applications are shown. Nowadays, relational model of data is
much more popular than before; although numerical
applications were linked to databases long time ago [5], now
this solution has greater importance.

In the basic systems, we can identify the application layer
and the storage layer. This is of course a very general division.
Approaching the matter in more detail, we can see that the
system can consist of network and data storage layer which in
turn consists of the database engine and data recording system
i.e. physical disks. Between the database and disks there can
be another layer network infrastructure for data transmission.
This is illustrated in Fig. 1.

DISK OR
ARRAY
Front-End RDBMS
Application
v
Network Direct Access/

Fig. 1. Data processing system with front-end and back-end components.

Both the application and the database engine are
appropriate software, so in heterogeneous environments, the
most common approach is the separation of functions between
different physical or virtual servers. Obviously, with a large
number of servers, the most economical solution seems to be
the virtualization of servers, but note that it may take place at
the expense of performance because the so-called hypervisor
distributes it among the virtual servers. The division between
the physical machines is the most natural while ensuring
appropriate efficient communication channel between servers.

Separating functionality on servers on the one hand allows
to obtain better performance, on the other hand increases the
administrative effort, the cost of infrastructure and
maintenance. Looking for the most efficient infrastructure to
maintain computing environments, particular attention must be
paid to both the functionality of solutions as well as its
economy.

In numerical applications, it attaches great importance to
the efficient storage system and access to data. Since the
computing power of today's hardware grows very fast with
next generations, mathematical and physical models are
becoming more complex which dramatically increases the
calculations scale and the amount of data. While the data
spaces are not a huge problem, access to them in a very short

Copyright © 2016 by Department of Microelectronics & Computer Science, Lodz University of Technology

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 4, 2016 141

acceptable time is often a big challenge. This problem is
directly related to the total time and the end results of
calculation or simulation.

The wuse of appropriate techniques and computation
equipment requires the determination of how data is to be
stored, which is to be accessed and what will be the
performance of such a system. Among the contemporary
methods of data accessing and storing there are two the most
important: first - data flat file (application directly reads from
and writes data to file) and second - relational database as a
more complex structure. The first one was widely described in
[9]. Here, it is taken into consideration second one solution
(relational database), because this allows to store data in
structured manner and offers more possibilities to optimize
data access.

To create complex heterogeneous numerical calculation
system it is important to determine:

e whether it will be a lot of data reads,

e whether it will be a lot of data writes,

e what will be the size of the data,

e whether the data will be mixed (e.g . text , numerical),

e whether the data will be LOB (Large Objects e.g.
XML).

The use of database engine such SQL Server brings up
many benefits - application developer implementing numerical
calculation has a much greater impact on way of data storing
and accessing. Obviously, it has certain consequences. In the
article [9] author showed the possibility of using the database
engine SQL server for storage and provision of data for the
numerical calculation application. The complexity of such a
solution makes it necessary on designing stage to pay attention
to many aspects of the nature of programming that can
significantly affect the efficiency of use and performance.

II. DATA PROCESSING IN OLTP DATABASES

The use of OLTP database systems in numerical
calculations allows for a more efficient search, processing and
updating data. Data stored in a structured manner allows for
faster access to them through the use of internal mechanisms
and database structures based on b-trees (indexes). Another
issue is the equipment itself for data store and the mechanisms
for extracting and updating data. Fast storage space for data is
still very expensive, and in the case of numerical data for the
simulation of complex numerical models, the amount of them
can be quite substantial. That is why the way of access and
store structures on OLTP database side are so important.

It is essential in order to design a system containing both
of two components: the database system and storage space
optimize comprehensively. This is important from the point of
view of database software vendors who implement features
those directly affect the utilization of space and utilize their
specific characteristics and properties.

Here, database and storage space performance aspects will
be discussed and after that what are mutual relationship
between both areas.

III. DATABASE SIDE PERFORMANCE CONSIDERATIONS

First of all, we have to consider how data are stored in
SQL Server database and how these data are accessed.
Seeking every time data file from beginning to end to search
appropriate data leads to large delays and consequently to stop
the calculation in case of bulk transactions. We can find out in
[6][8] data in SQL Server are stored in pages and extents. To
effectively access the data indexes must be (clustered or
nonclustered) applied, organized in b-tree structures (indexes
require appropriate managing, especially in case of writing
data). An index (clustered or non-clustered) is a structure
associated with a table that take part in query execution [6][7];
it contains keys built from one or more columns in the table.
In OLTP databases when many data is read and write in the
same time indexes must be updated, too. SQL Engineer has to
ensure, that writes will not have meaningful performance
impact on indexes. This can be achieved with Fill Factor
parameter. During index creation or rebuilding, the fill-factor
determines free space on page level to fill with data. This
allows to growth of index data in the future. Specifying this
value as 70 means, that 30 percent of each page will be left
empty, providing necessary space for index expansion during
data insertion to the underlying table. The size of empty space
depends on changeability level of data. If there will be no
space, indexes can become ineffective without rebuilding
indexes (which very often takes a time).

All disk operations pass through so called Buffer Cache,
which is located in the memory of the server. So, if this looks
as a very important part of whole system, how much memory
for an instance of SQL Server should be allocated? In many
sources one can find that SQL Server memory should have a
maximum of 80% of the total available. Less memory will
cause more often paging, less buffer cache will cause more
often exchange data with disk, and generally will slow down
the system. Of course, memory amount depends on the nature
of the operations performed on the database. If there are
domination a large variability read/write pages of data (like in
OLTP), the buffer should be relatively large to accommodate
them in it.

Buffer Cache is very useful during reading data from the
database. Database engine reads the data direct from disk
drive when it is accessed them first time. After that these data
are placed in the buffer cache (this is so called physical
reading). Next reference to these data is by use the buffer
cache — obviously, it definitely speeds up extracting data
(logical reading) (Fig. 2). Pages in the buffer cache does not
exist forever, the oldest are preempted in favor of these new, if
space runs out. This means, that physical reading from disk
again will take place (which takes more time). A large number
of readings can consequently affect page lifetime if the buffer
cache is not large enough.

Logical Physical
read/write read/write

RDBMS ——p| Buffer —r .
<4— Cache —

S’
Fig. 2. Read and write data through Buffer Cache.

142 NAZDROWICZ: EXTRACTING AND UPDATING DATA PERFORMANCE DURING BULK NUMERICAL CALCULATIONS IN DATABASES

In case of OLTP databases and numerical calculations one
has to take into consideration large number of transaction per
short unit of time, which can last long (depend of numerical
algorithm). Such algorithms very often refer to the same data,
that is why this should reside in buffer cache. The serious
problem is that volume of these data is very large and data is
often exchanged with data read from the physical disk. In Fig. 3
there is real OLTP processing with large number of batches
(SQL statements) executed and large number of transactions”.

Large number of transaction and batches executed
obviously causes data paging between storage and CPU. Data
are located based on the nature of data processing — its
characteristics, intensity and hardware possibilities. Sudden
growth data requests and updates fill the buffer cache with
data for further processing very fast. However, data volume is
very meaningful, data changes very fast during calculation
processing and also expires very fast. Consequently, it must be
exchanged with old one. That is why during calculation
processing data can be taken directly from disk drive. A
parameter confirming such situation is Page Life Expectancy,
which shows the life of the page in buffer manager. A high
value of this parameter indicates that the data pages live in the

14000
— 12000
M
£
o
E10000
=
I
2 8000
o
s
o 6000
&
- Wy
= 4000
©
ol
Id
o 2000
0
[NONNMOOMm
2ESSSO282ARARRRININNAIATAIF
SH8BHNMIFSNNNTNESARARI SRR LT
NN MMOONOMO NN TT T T T ANLLNN N N OW YW OO
0000000000000 000DO0D0D0000D000 0O
Time
—— BachesCount —— Transactions Count
(a)
50000
45000 ————]
__ 40000
M
E 35000
c
S 30000
g
& 25000
>
w
o 20000
-
=
o
2, 15000
&
10000
5000
0
NN MM ™M
BEO30F92A292RARQNANANATIANAY
mmaoN N ~N S m m
AL RRTAOCRRIZABRINER8A3FZR
AANMH AN TS TTETTTANNON NN DG BE DD
0000000000000 0D00D00D0000O0D00O0O0O
Time

Fig. 3. Dependency between Page Life Expectancy (a) and number of
transactions (b).

" All presented results were extracted from real database bulk On-Line
Transaction Processing type environment managed by author

buffer cache for long time, and the application that wants to
read the data does not have to take them from slower disks
(physical read) but from fast memory buffer (logical read)
only. The low value of the parameter in turn claims that there
is such a large dispersion of read pages that do not fit to these
in the buffer and need to be replaced frequently. This is also
information for system engineer that the buffer should be
expanded (if it is possible).

Cache hit ratio is the parameter that shows how buffer
cache is utilized, what is the percentage of data taken from it
during processing. Looking at the Fig. 4 it can be noticed that
parameter cache hit ratio is very low for period of time (this
parameter tells what is the percentage level of data is taken
from buffer cache requested by SQL query). We can also
correlate this characteristic with Page Life Expectancy and
Physical 10 parameters (Fig. 6b). Low level of cache hit ratio
causes physical 10 instead of logical and exchange data
between buffer pool and physical I10.

Dramatically drop hit ratio value is reflected immediately
in other parameter — Percent Disk Busy (Fig. 4b). We see in
this figure the period of disk time is utilized at 100%
(measured totally for all reads and writes).

IOOT
90
L 80
R
o 70
2
< 60
=
I
s 50
=
]
8 40
]
= 30
a3
20
10
0
W OUNSN~S™S 000000 OO o NN MMM < <
LN S W oul NCEE W B0 w A GV R UY RS S UL BRI e 0
NN B0 0O 0SS O0ddANNMMHEITT NN OGNS OO G
T HBOANANSSNN R REaONNXYNO il 0%
NANGMMHOGOH ST ITT T ITUOLUL LB LY O VWYY
OO0 0000000000000 O0OO0O0O0O0O0 OO o
Time
(a)
100
80
* 70
&
5 60
@
-
2 50
=}
P
<
S 40
2
& 30
20
10 ‘
0 =) A
NSNS oo o m o, m
SEES0029N299ARRRARISNNYIIIIITIR
m ¢ m m
R oNRAR LSRR SREERNNRLEFSONRABI,
S R L R B Y ST 7 ST T, SR v, QY- S- J. G . S - gy
CO0OO0DO0O0DO0OOOOO0O0O0OOOOOOOOOOO0O0O660606
Time

Fig. 4. Buffer Cache Hit Ratio (a) and Disk Busy (b) parameter characteristics.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 4, 2016 143

Figures 5 present Disk Reads per second and Disk Writes
per second characteristics. First figure 5a shows meaningful
growth disk reads two times during batches execution
(fluctuates between 300 and 600). During second batches
execution it can be seen that additional writes appeared (about
1500 IOPS) — Fig. 5b. That is why total data transfer was
meaningful and it could impact negatively on backend
physical disk volumes performance.

1600
1400

1200

1000

200

Disk Reads Per Sec
. g 8 8

~ om m
$8¢R302929222 23RN ANARARAT
SRSCARRSASSRARLYSTNRARLESZRBRER
AAMAAAHAMN T TTTTTTNNNLNNN VDYDY VY
0000000000000 O0O00D0DO000O0DO0000O000O0

Time
(a)
2500
2000

1500

1000

Disk Writes Per Sec

500

-

2895509932222 RARAANAYAIAAAIR

NN AAS s B ARNSFSEaRREZENRRAES

ANMHAANHONTTTTTTNNLNONLNNDOY OO O WY

CODO0DOO0O0DOOO0OOOOOOOOOOOODOO0OOO00D0
Time

Fig. 5. Disk Reads per second (a) and Disk Writes per second (b).

In next figures 6 Page Reads per second and Physical 10
are shown. First figure 6a reflects situation seen on previous
characteristics - meaningful growth page reads during
transactions. Notice, that in that time there were not many
writes, that is why exchanges in buffer cache are so intensive.
When we take a look at second period of time, we can see that
buffer cache fluctuates; the lowest Buffer Cache Hit Ratio
level is 80% but here writes dominate and they can be done
directly to physical disk (that is why again disk is busy in
80%). So, if writes dominates why page life expectancy
parameter is again low? The answer is simple - Buffer cache is
shared among many databases (it is one for whole SQL Server
instance) and Page Life expectancy is calculated for many
databases placed on different physical disks.

8000
7000
6000
°
c
8
2 5000
&
a
« 4000
°
o
&
< 3000
o
-\
s
2000
1000
0 —J L
NS HeEHNNNNMM MM
2885922 2A2A3RARANANAIAIATG
T T MM ANN o~ ~N S s T MO MmN
CASSIANSNoTIRARIREIRIALEITAIY
NANMOMMMNMNMNST TT T TT AUVLNHVN N OY OO
0000000000000 000D00D00D00D000O0O0O
Time
(a)
8000
7000
6000
o 5000
=
®
o 4000
@
>
o=
S 3000
I ansMoaMnaital Ao
2000 I‘
1000 (
0
NSNS HeE NANNNNMOMM T
2700 ARARLEARAS S8R RLISIERBRALG
AANMAdAAIMeSs S STT NN HUWY LD VY VYWY
OO0 0000000000000 00D000D0D00000O00O0O
Time
——Reads —— Writes

Fig. 6. Page Reads per second (a) and Physical 1/O (b).

This example shows that even though one database does
not utilize buffer cache, the other one can do this and has
meaningful impact on the system as a whole. Moreover, one
non-optimized database can slow down other well-optimized
one. This is why system engineer must have knowledge and
observe behavior of all databases on one instance.

It is worth to check how delay characteristics are looking.
There are two parameters it can be observe — Wait Time and
Server Wait (here sys.dm_os_latch_stats and sys.dm_os_wait_stats
DMVs - dynamic views can be used). Taking into
consideration above figures, we are mostly interested in 10
Latches (Fig. 7a). As we expected, they appeared in the same
period of time where disk was busy in 100% (compare Fig.
4b) causing serious bottleneck. Notice, that wait time is 30s in
first case, in second one accidentally 3 times more.
Confirmation of this situation is next Fig. 7b on which it can
be observed that server waits for 10 operation as many 1 — 2
seconds. Such long lasted state extends meaningfully
calculation, what is worse, expands transaction log.

We can observe on fig. 6 that paging strongly depends on
number of transactions and T-SQL compilations. Generally,
increase time of life page in buffer is inversely proportional to
transaction amount, compilations and executed batches
amount.

144 NAZDROWICZ: EXTRACTING AND UPDATING DATA PERFORMANCE DURING BULK NUMERICAL CALCULATIONS IN DATABASES

120000
100000
)
E 80000
E=
o
=
3
. 60000
o
£
=
‘S 40000
s L.
¥ v Y
20000
0
9285052 N2A2A2RIRAVANANAINAF
RIFCANNI g9 9AREGLARNERITRAST
AAAAAOHHONSTTTTTTTANLONN DY OD O
COO0O00DO0ODODOOOOOOOOOOOOOOOO0O0OB60
Time
(a)

2500

500

Server Wait- 1/O [ms]
S]
% 8 g

$8838JNAINARSIIAARAS S IA]AA

SHEHRRREANNIYEARNRERSAARLY

NANMMMOMHOMMNMONE T TTT NN VOWN N OWYW YWY

0O 00 0000000000000 000 OO0 O0OO0OO0O OO
Time

Fig. 7. Wait Time — Latch (a) and Server Wait for I/O (b).

IV. STORAGE SIDE PERFORMANCE CONSIDERATIONS

SQL Server stores data on disks which can be connected
locally or via network (Fig. 8a and 8b). To optimize space
utilization the best option is to use centralized storage called
array, to which many applications/servers can be connected
and storage space can be divided for Logical Units (volumes)
and presented to them as DAS (Direct Attached Storage).
There are some reasons to do that. First of all flexibility,
which allows to expand data volume dynamically as necessary
in case of rapid growth. Using so called thin provisioning one
can declare volume as target space logically without full
physical cover of that space. This feature can be useful to
optimize storage maintaining costs and to declare space as
necessary. In case of locally connected disks we do not have
such flexibility, because amount of disks is very limited. Also,
adding new disks is impossible in most cases. Second reason
is to use external storage engine and infrastructure to optimize
data access and update. Arrays have internal processor, front
end, backend and cache components which are optimized for
data reading and writing. The most important part — cache —
meaningfully improves data access thanks to temporarily store
often reading data. Also writing data uses cache and there is
internal mechanism to save data in case of failure including
battery and microcode which moves data from cache to disk to
store them permanently.

Total IOPS is much larger than single disk

=)
=)

Fig. 8. Data storage system for application local disk (a), disk array (b).

Partition 1

Partition 2

LUN1

LUN 2

Third reason is to use array microcode to use multipathing,
load balancing, tiering and to moving chunks of data from one
disk to other to balance physical disk load. Multipathing
allows to split data coming from HBA (Host Bus Adapter)
between many paths and deliver to disk more efficiently. In
case of path failure dedicated software marks this path as
degraded and whole load from this path is moved to other one
without processing disruption. Tiering is the feature of arrays,
thanks to that most loaded chunks of data are moved to other
level of disks (so called tier). Disk levels have disks of various
types (SSD, SAS, SATA). If data load is too high on given
tier, data are automatically move to higher speed disks.

The physical disk subsystem directly affects the numerical
calculation performance during OLTP processing. Any
performance degradations on disks immediately negatively
affect the performance SQL Server data processing. Therefore
it is necessary to check regularly the level of disk subsystem
consuming parameters like IOPS. Performance testing is often
done empirically and makes changes in the course of
performance analysis (therefore use of arrays is more efficient
than local disks).

There are three most important parameters of disk
subsystem should be taken into account for database
application of numerical calculation:

e the number of operations per second,
e time to read and write data,
e the queue to disk / volume.

The number of operations per second (IOPS) - the
observation of this parameter is necessary and allows us to
evaluate whether the use of the subsystem by the numerical
software approaches the technological frontier. In presented
example to solve the problem it is necessary to set up RAID
group on the right amount of physical disks. Knowing
technological IOPS limitation of specific single disk, it is
possible to form composite volumes and increase this limit.

In the example above, total IOPS requested was greater than
RAID Group IOPS, that is why server was in wait state.

Time to read and write data - this parameter comes
directly from disk configuration and the application/database
access competition to particular volumes/LUNs by processes.
Notice, that physical disk divided on two or more logical
volume does not give performance advantage because total

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 7, NO. 4, 2016 145

IOPS does not extend (in the case of SAS drive about 210
IOPS). It can be necessary to deploy accessed data to separate
physical disks (each of the disks has 210 IOPS) — a profit is
therefore twofold. The situation is similar in the case of arrays
applied, except that a large number of disks allows for a much
improved performance.

Queue to disk — describes how many IOPS waits for disk
service. Large value means latency of data operation. Then
requests cannot be immediately serviced and must be placed
into the queue.

In case of bulk numerical calculations like described
earlier it is justified to consider RAID group for storage
objective, because physical disk is a bottleneck itself; there is
a problem with requests service in acceptable time (disk is
busy in 100% and queue to disk enlarges). The main problem
is that there are too much IOPS required and single disk
cannot fulfil this requirement.

What is the best RAID solution for numerical calculation?
First of all it is necessary to make oneself aware that data
protection is not a priority. Priority is to get as much IOPS as
possible, that is why the simple combination physical disks in
RAID 0 (stripping) is the best solution. Moreover, RAID 0
(stripping) having no additional parity data, offers zero write
penalty what is especially important during updating data. It is
done directly on physical disks and maximum available IOPS
is utilized.

V. CORRELATION SQL SERVER AND STORAGE
ARRAY PARAMETERS

Above aspects of the performance processing of large
amounts of data in the OLTP database systems, which also
have a numerical applications are critical to the optimization
process. Proper optimization process however, requires a
broad perspective on the issues of data processing over the
entire path of the outermost point data storage or database (a
physical disk for data storage). Unfortunately, it often happens
that the disk volumes are not directly presented to the database
engine, and through the operating system (Fig. 8). Analysis
and optimization of data processing requires consideration of
intermediate disk volumes which are at the operating system
level (e.g. by LVM - Logical Volume Manager).

DISK OR
ARRAY
SQL Server Operating
engine Quctam
_/

Logical Volume Raw devices
from Operating

System —e.g.

(Logical Volume
from Array) - LUN

Fig. 8. Dependency between database engine and storage volumes.

The simplest analysis can be done only with physical disks
parameters and SQL Server characteristics. Above
characteristics shows that in numerical calculations one of the
serious problems is access to hardware resources. To identify

source of problem and find solution it is required to find
relationships between particular components.

In case of OLTP SQL Server databases and numerical
calculations locks and latches have the largest impact on
performance. Locks have been already described in [9] — they
appear on database level. Latches however are related to
buffer and resource waiting. There are many types of latches
and analysis of performance problems requires good
knowledge of software and hardware, because various
elements can be related to the same latch (for example
Network IO can reflect either problems connection between
application and database or problems with iSCSI storage
implementation).

In Fig. 9 model of correlation SQL Server and Storage
parameters is shown, which can be very useful in case of
analyzing performance problems on backend side for
numerical calculation application. Problems begin with high
value of Server Wait parameter. Then one can suspect that any
resources block data processing. Here is T-SQL code can be
used to extract the information about latches currently on the
server:

DBCC SQLPERF ('sys.dm os latch stats', CLEAR);

-
High values

GO
SELECT * FROM sys.dm os latch stats;
GO
1
DATABASE ENGINE : STORAGE
1
' DISK/
| Server Wait | !
1
N
Identyify source of wait : ARRAY
SNt
|
I Latch | Wait for | e’
physical disk :
eSS : 10PS disk performace
- 1 increase neccessal
Physical 10 Level Highvalies
W, 3 Time to read and write data
Check Logical IO wy -
3 h Check data access time
Buffer Cache Low Buffer [T
LA dEk
Cache Hit Ratio 1 Queve. yo:ds!
S, —
Check Buffer Cache pages |r Value above limit {depends on
exchange rate R i - vendor
les— ! Disk Read:
Page Life Expectancy How \{.qjues ! sk Reacs/
exchinges often |
& 1
Check disk utilization take place \ 7
| Migh values *
| Disk Busy ratio Fligh values — :
' 0S LVM Layer —
Check I0PS per disk about 100% 1 volumes parameters
[
|
Disk Reads/ < ¥ A
|
|
1
1

Fig. 9. Model of correlation SQL server and storage performance parameters.

Model presented in Fig. 9 shows direct correlation between
parameters database engine and storage with dotted arrows.
That means these characteristics are closely related and
changes noticed on database side can be also observed on
related parameters on storage side. Notice also, that in analysis
OS LVM (related to logical disks) can have significance,
because, depending on environment, volumes can be seen in
database as RAW devices (in Oracle DB engine) - presented
directly from disk array or as partitions created on Operating
system. In that situation the same disk parameters must be

146 NAZDROWICZ: EXTRACTING AND UPDATING DATA PERFORMANCE DURING BULK NUMERICAL CALCULATIONS IN DATABASES

observed on array and operating system especially when
RAID is implemented on operating system or array.

The last component on Database side to identify
performance problem is buffer pool. Looking at the
characteristic of Buffer Pool Cache Hit Ratio and using the
following T-SQL query:

SELECT count (*)*8/1024 AS 'Cached Size

,case database id
FROM sys.dm os_buffer descriptors

(MB) '

one gets information about cache utilization and all the data
pages that are currently in the buffer pool.

For a large number of calculations, in case of insufficient
amount of RAM and the same buffer cache space, stored
procedures recompile many times. It is recommended to
implement buffer pool extension (available in SQL Server
2014) and increase maximum IOPS performance of disk array
volumes with increase number of disk in RAID group. Also,
RAID 0 type volumes should be used, and also (if it is
technologically possible) - multipathing. To enable Buffer
Pool Extension Feature it can be done with the following T-
SQL code:

ALTER SERVER CONFIGURATION

SET BUFFER POOL EXTENSION ON
(FILENAME = 'E:\BPE\SQL2014.BPE',
GB) ;

SIZE = 10

Taking into consideration that data are stored in 64 kB
blocks (recommended) total Input/Output operations per
second can be calculated from following formula:

MBps Throughput '
KB per 10

IOPS= 1024

This value is useful to estimate total IOPS serviced by disk
subsystem. Knowing that SQL Server data page size is
8192kB (effectively 8060kB), one can estimate how many
IOPS service one page of data.

VI. CONCLUSIONS

The main objective of this article is to present performance
problems with using OLTP relational database-based storage
for bulk data calculations. As one can see these problems have
performance nature and depend on many elements. Front-end
application having SQL Server database as a backend for
numerical calculations meet very similar problems like in
other cases. Obviously, it is because there are general rules
governing queries optimization, execution plans and others.
Although Database engine application as a backend storage is
encouraged, implementer has to be aware of disadvantages of
such solution. Before of all database must be continuously
monitored in point of view all internal structures and physical
external storage. As it is presented in this article, parameters
of both components tightly depends on each other. The most
important areas in SQL server, having impact on performance
of database engine, are: Buffer Cache and time of access to
disk or volumes.

Engineering of OLTP database administration in numerical
calculation environment requires deep knowledge and
experience about administering relational database engine, its
functionality and performance. To create optimal architecture
for scientific data management it needs to take them all into
consideration, because it may cause a significant time
extension of the calculation.

REFERENCES

[1] J. Gray, et al.: “Scientific Data Management in the Coming Decade”
Microsoft Research Technical Report MSR-TR- 2005-10, 2005, available
at: http://arxiv.org/ftp/cs/papers/0502/0502008.pdf

[2] F.E. Karaoulanis, C.G. Panagiotopoulos, E.A. Paraskevopoulos, “Recent
developments in Finite Element programming”, First South-East
European Conference on Computational Mechanics, SEECCM-06,
Kragujevac, Serbia and Montenegro, June 28-30, 2006.

[3] G. Heber, J. Gray, “Supporting Finite Element Analysis with a Relational
Database Backend”, Technical Report MSR-TR-2005-49, April 2005,
available at: http://research.microsoft.com/apps/pubs/default.aspx?id=
64535.

[4] J. Peng, D. Liu, K. H. Law, “An Online Data Access System for a Finite
Element Program”, http://eig.stanford.edu/publications/jun_peng/
data_access_system.doc.

[5] R.I. Mackie, “Using Objects to Handle Complexity in Finite Element
Software”, Engineering with Computers, 13(2), 1997, pp 99-111.

[6] P. Gulutzan, T. Pelzer, “SQL Performance Tuning”. Addison-Wesley
Professional, Boston, 2003.

[7] S. Dam, G. Fritchey, “SQL Server 2008 Query Performance Tuning
Distilled”, Apress, New York, 2009.

[8] K. Delaney, “Inside Microsoft SQL Server 2005”, The storage engine,
Microsoft Press, Redmond 2007.

[9] J. Nazdrowicz, “A Relational Database Environment for Numerical
Simulation Backend Storage”, Proceedings of the 22nd International
Conference "Mixed Design of Integrated Circuits and Systems", June 25-
27,2015, Torun, Poland.

Jacek Nazdrowicz was born in Poddebice, Poland,
in 1975. He received the MSc degrees in Technical
Physics (Computer Physics), Computer Sciences
(Software Engineering and Networking Systems)
and Marketing and Management from the Lodz
University of Technology, Poland, in 1999, 2000
and 2001 respectively and the PhD degree in
Economics Sciences, Management discipline, in
Lodz University of Technology, in 2013.

From 2014 he attends doctoral study in Lodz
University of Technology, electronics discipline. His research interests
include modelling and simulation MEMS devices and their application in
medicine. He participated in EQuMEMS project (Developing Multidomain
MEMS Models for Educational Purposes). He also educates in COMSOL
software. Now he participates in Strategmed project (supported by the
National Center for Research and Development)

Between 2007 and 2016 he worked in mBank as a System Engineer of SQL
Server databases. He has the following certifications: MCSA Windows 2012,
MS SQL Server 2012 and Storage Area Network (SAN) Specialist.

Since 2016 he also works in Fujitsu Technology Solutions in Lodz in Remote
Infrastructure Management Department in Storage Team as a Storage
Engineer (SAN Infastructure, Brocade, Netapp, Eternus products). He
educates in many data storage and backup technologies (IBM, DELL/EMC,
Hitachi, Fujitsu).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

