PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of quantum-well states and carrier scattering times in discontinuities of opto-electrical characteristics of SCH lasers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drift-diffusion computer simulation model available in Synopsys’ Sentaurus TCAD User Guide is used to study electrical and optical characteristics of a separate-confinement heterostructure laser based on AlGaAs. We investigate the role of the width and depth of quantum-well active region, below and above the lasing threshold. The device properties depend on both, the number of bound quantum-well states and on closeness of the highest bound states to conduction or valence band offset. The lasing action may not exist at certain widths or depths of quantum-well, and the threshold current is a discontinuous function of these parameters, at such values of quantum-well width or depth when the highest quantum-well bound states cross conduction or valence band energy offset. The effects are more pronounced at low temperatures. Discontinuities in characteristics are found, at certain conditions, in temperature dependences as well. The carriers scattering time on quantum-well is shown to have a crucial role for the amplitude of discontinuities of these characteristics. The current below the lasing threshold and the threshold current density itself decrease with an increase of quantum-well scattering times and the amplitude of discontinuities decreases then as well.
Czasopismo
Rocznik
Strony
135--146
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • State University – Education-Science-Production Complex, 29 Naugorskoye Shosse, Oryol, 302020, Russia
autor
  • State University – Education-Science-Production Complex, 29 Naugorskoye Shosse, Oryol, 302020, Russia
autor
  • Oryol State University, 95 Komsomolskaya Street, Oryol, 302026, Russia
Bibliografia
  • [1] Sentaurus TCAD User Guide, Synopsys, 2010, http://www.synopsys.com
  • [2] MATYUKHIN S.I., KOZIOL Z., Influence of the active region width on characteristics of AlGaAs semiconductor laser with separate confinement heterostructures, Nanoengineering 5, 2012, p. 14, (in Russian).
  • [3] KOZIOL Z., Quantum-well states and discontinuities in opto-electrical characteristics of SCH lasers, arXiv:1112.0139v1 [cond-mat.mtrl-sci], 2011.
  • [4] ANDREEV A.V., LESHKO A.Y., LYUTETSKIY A.V., MARMALYUK A.A., NALYOT T.A., PADALITSA A.A., PIKHTIN N.A., SABITOV D.R., SIMAKOV V.A., SLIPCHENKO S.O., KHOMYLEV M.A., TARASOV I.S., High-power laser diodes (λ = 808–850 nm) based on asymmetric separate-confinement heterostructures, Semiconductors 40(5), 2006, pp. 611–614.
  • [5] ANDREEV A.YU., ZORINA S.A., LESHKO A.YU., LYUTETSKIY A.V., MARMALYUK A.A., MURASHOVA A.V., NALET T.A., PADALITSA A.A., PIKHTIN N.A., SABITOV D.R., SIMAKOV V.A., SLIPCHENKO S.O., TELEGIN K.YU., SHAMAKHOV V.V., TARASOV I.S., High-power lasers (γ = 808 nm) based on the AlGaAs/GaAs heterostructures of separate confinement, Semiconductors 43(4), 2009, pp. 519–523.
  • [6] KOZIOL Z., MATYUKHIN S.I., Modified exponential I(U) dependence and optical efficiency of AlGaAs SCH lasers in computer modeling with Synopsys TCAD, arXiv:1107.4668v1 [cond-mat.mtrl-sci], 2011.
  • [7] KOZIOL Z., MATYUKHIN S.I., The lasing wavelength of QW active region of AlGaAs SCH lasers, Romanian Journal of Physics 57(3–4), 2012, pp. 711–719.
  • [8] BIRNER S., ZIBOLD T., ANDLAUER T., KUBIS T., SABATHIL M., TRELLAKIS A., VOGL P., Nextnano: general purpose 3-D simulations, IEEE Transactions on Electron Devices 54(9), 2007, pp. 2137–2142.
  • [9] VARSHNI Y.P., Temperature dependence of the energy gap in semiconductors, Physica 34(1), 1967, pp. 149–154.
  • [10] FERREIRA R., BASTARD G., Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Physical Review B 40(2), 1989, pp. 1074–1086.
  • [11] BIRNER S., Nextnano3 – Tutorial. Scattering Times for Electrons in Unbiased and Biased Single and Multiple Quantum Wells, http://www.nextnano.de
  • [12] POZHELA YU., POZHELA K., YUTSENE V., SUZHEDELIS A., SHKOL’NIK A.S., MIKHRIN S.S., MIKHRIN V.S., Vzaimodeystviye elektronov s lokalizovannymi v kvantovoy yame opticheskimi fononami, Fizika i Tekhnika Poluprovodnikov 43(12), 2009, pp. 1634–1640, (in Russian).
  • [13] SOKOLOVA Z.N., TARASOV I.S., ASRYAN L.V., Zakhvat nositeley zaryada i vykhodnaya moshchnost’ lazera na kvantovoy yame, Fizika i Tekhnika Poluprovodnikov 45(11), 2011, pp. 1553–1559, (in Russian).
  • [14] DAVIES J.H., The Physics of Low-Dimensional Semiconductors. An Introduction, Cambridge University Press, 1998.
  • [15] PIPREK J., Semiconductor Optoelectronic Devices. Introduction to Physics and Simulation, Academic Press, 2003.
  • [16] HERNÁNDEZ-ROSAS J., VILLEGAS-LELOVSKY L., GONZÁLEZ DE LA CRUZ G., Capture of carriers by quantum wells via optical-phonon deformation potential, Revista Mexicana de Física 48(4), 2002, pp. 295–299.
  • [17] BLOM P.W.M., SMITH C., HAVERKORT J.E.M., WOLTER J.H., Carrier capture into a semiconductor quantum well, Physical Review B 47(4), 1993, pp. 2072–2081.
  • [18] MOSKO M., KÁLNA K., Carrier capture into a GaAs quantum well with a separate confinement region: comment on quantum and classical aspects, Semiconductor Science and Technology 14(9), 1999, pp. 790–796
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90c18f41-0123-4e68-8be5-776127d077ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.