Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper explores the parametric appraisal and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/-carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and weight % of graphene oxide on machining responses, namely surface roughness, thrust force, torque, delamination (In/Out) has been investigated. An integrated approach of a Combined Quality Loss concept, Weighted Principal Component Analysis (WPCA), and Taguchi theory is proposed for the evaluation of drilling efficiency. Response surface methodology was employed for drilling of samples using the titanium aluminum nitride tool. WPCA is used for aggregation of multi-response into a single objective function. Analysis of variance reveals that cutting velocity is the most influential factor trailed by feed and weight % of graphene oxide. The proposed approach predicts the outcomes of the developed model for an optimal set of parameters. It has been validated by a confirmatory test, which shows a satisfactory agreement with the actual data. The lower feed plays a vital role in surface finishing. At lower feed, the development of the defect and cracks are found less with an improved surface finish. The proposed module demonstrates the feasibility of controlling quality and productivity factors.
Wydawca
Czasopismo
Rocznik
Tom
Strony
229--258
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
autor
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
autor
- Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Kolkata, India.
Bibliografia
- [1] Y.A. Roy, K. Gobivel, K.S.V Sekar, and S.S. Kumar. Impact of cutting forces and chip microstructure in high speed machining of carbon fiber – Epoxy composite tube. Archives of Metallurgy and Materials, 62(3):1771–1777, 2017. doi: 10.1515/amm-2017-0269.
- [2] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5):638–670, 2011. doi: 10.1016/j.progpolymsci.2010.11.003.
- [3] P.F. Mayuet, F. Girot, A. Lamíkiz, S.R. Fernández-Vidal, J. Salguero, and M. Marcos. SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Engineering, 132:693–700, 2015. doi: 10.1016/j.proeng.2015.12.549.
- [4] A. Caggiano. Machining of fibre reinforced plastic composite materials. Materials, 11(3):442, 2018. doi: 10.3390/ma11030442.
- [5] V. Sonkar, K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of GFRP composites: A degree of similarity approach. Procedia Materials Science, 6:538–543, 2014. doi: 10.1016/j.mspro.2014.07.068.
- [6] P. Kuppan, A. Rajadurai, and S. Narayanan. Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1–2):74–84, 2008. doi: 10.1007/s00170-007-1084-y.
- [7] K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement, 77:222–239, 2016. doi: 10.1016/j.measurement.2015.09.015.
- [8] B.C. Routara, S.D. Mohanty, S. Datta, A. Bandyopadhyay, and S.S. Mahapatra. Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 51(1–4):135–143, 2010. doi: 10.1007/s00170- 010-2599-1.
- [9] M.K. Das, K. Kumar, T.K. Barman, and P. Sahoo. Optimization of MRR and surface roughness in PAC of EN 31 steel using weighted principal component analysis. Procedia Technology, 14:211–218, 2014. doi: 10.1016/j.protcy.2014.08.028.
- [10] S. Grieu, A. Traoré, M. Polit, and J. Colprim. Prediction of parameters characterizing the state of a pollution removal biologic process. Engineering Applications of Artificial Intelligence, 18(5):559–573, 2005. doi: 10.1016/j.engappai.2004.11.008.
- [11] S.D. Lahane, M.K. Rodge, and S.B. Sharma. Multi-response optimization of wire-EDM process using principal component analysis. IOSR Journal of Engineering, 2(8):38–47, 2012. doi: 10.9790/3021-02833847.
- [12] R. Ramanujam, K. Venkatesan, V. Saxena, R. Pandey, T. Harsha, and G. Kumar. Optimization of machining parameters using fuzzy based principal component analysis during dry turning operation of inconel 625 – A hybrid approach. Procedia Engineering, 97:668–676, 2014. doi: 10.1016/j.proeng.2014.12.296.
- [13] H. Yang, R. Luo, S. Han, and M. Li. Effect of the ratio of graphite/pitch coke on the mechanical and tribological properties of copper-carbon composites. Wear, 268(11–12):1337–1341, 2010. doi: 10.1016/j.wear.2010.02.007.
- [14] R.K. Verma, P.K. Pal, and B.C. Kandpal. Machining performance optimization in drilling of GFRP composites: A utility theory (UT) based approach. In: Proceedings of 2016 International Conference on Control, Computing, Communication and Materials, pages 1–5, Allahbad, India, 21-22 Oct. 2016. doi: 10.1109/ICCCCM.2016.7918255.
- [15] K. Palanikumar, J.C. Rubio, A. Abrão, A. Esteves, and J.P. Davim. Statistical analysis of delamination in drilling Glass Fiber-Reinforced Plastics (GFRP). Journal of Reinforced Plastics and Composites, 27(15):1615–1623, 2008. doi: 10.1177/0731684407083012.
- [16] P.E. Faria, J.C. Campos Rubio, A.M. Abrão, and J.P. Davim. Dimensional and geometric deviations induced by drilling of polymeric composite. Journal of Reinforced Plastics and Composites, 28(19):2353–2363, 2009. doi: 10.1177/0731684408092067.
- [17] V.N. Gaitonde, S.R. Karnik, J.C.C. Rubio, W. de Oliveira Leite, and J.P. Davim. Experimental studies on hole quality and machinability characteristics in drilling of unreinforced and reinforced polyamides. Journal of Composite Materials, 48(1):21–36, 2014. doi: 10.1177/0021998312467552.
- [18] Niharika, B.P. Agrawal, I.A. Khan, and Z.A. Khan. Effects of cutting parameters on quality of surface produced by machining of titanium alloy and their optimization. Archive of Mechanical Engineering, 63(4):531–548, 2016. doi: 10.1515/meceng-2016-0030.
- [19] S. Chakraborty and P.P. Das. Fuzzy modeling and parametric analysis of non-traditional machining processes. Management and Production Engineering Review, 10(3):111–123, 2019. doi: 10.24425/mper.2019.130504.
- [20] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and Genetic Algorithm. Archive of Mechanical Engineering, 63(1):45–71, 2016. doi: 10.1515/meceng-2016-0003.
- [21] D. Palanisamy and P. Senthil. Optimization on turning parameters of 15-5PH stainless steel using taguchi based grey approach and TOPSIS. Archive of Mechanical Engineering, 63(3):397–412, 2016. doi: 10.1515/meceng-2016-0023.
- [22] M.S. Węglowski. Experimental study and response surface methodology for investigation of FSP process. Archive of Mechanical Engineering, 61(4):539–552, 2014. doi: 10.2478/meceng2014-0031.
- [23] H. Majumder, T.R. Paul, V. Dey, P. Dutta, and A. Saha. Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement, 107:19–30, 2017. doi: 10.1016/j.measurement.2017.05.007.
- [24] P.K. Kharwar and R.K. Verma. Grey embedded in artificial neural network (ANN) based on hybrid optimization approach in machining of GFRP epoxy composites. FME Transactions, 47(3):641–648, 2019. doi: 10.5937/fmet1903641P.
- [25] R. Arun Ramnath, P.R. Thyla, N. Mahendra Kumar, and S. Aravind. Optimization of machining parameters of composites using multi-attribute decision-making techniques: A review. Journal of Reinforced Plastics and Composites, 37(2):77–89, 2018. doi: 10.1177/0731684417732840.
- [26] K. Żak. Cutting mechanics and surface finish for turning with differently shaped CBN tools. Archive of Mechanical Engineering, 64(3):347–357, 2017. doi: 10.1515/meceng-2017-0021.
- [27] R. Bielawski, M. Kowalik, K. Suprynowicz, W. Rządkowski, and P. Pyrzanowski. Experimental study on the riveted joints in Glass Fibre Reinforced Plastics (GFRP). Archive of Mechanical Engineering, 64(3):301–313, 2017. doi: 10.1515/meceng-2017-0018.
- [28] A.K. Parida, R. Das, A.K. Sahoo, and B.C. Routara. Optimization of cutting parameters for surface roughness in machining of GFRP composites with graphite/fly ash filler. Procedia Materials Science, 6:1533–1538, 2014. doi: 10.1016/j.mspro.2014.07.134.
- [29] M.C. Yip, Y.C. Lin, and C.L. Wu. Effect of multi-walled carbon nanotubes addition on mechanical properties of polymer composites laminate. Polymers and Polymer Composites, 19(2– 3):131–140, 2011.
- [30] I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, S. Anshin, I. Mazov, J.-P. Issi, and D. Kusnezov. Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Composites Science and Technology, 129:79–85, 2016. doi: 10.1016/j.compscitech.2016.03.032.
- [31] N.S. Mohan, A. Ramachandra, and S. M. Kulkarni. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites. Composite Structures, 71(3–4):407–413, 2005. doi: 10.1016/j.compstruct.2005.09.039.
- [32] R. Bhat, N. Mohan, S. Sharma, R.A. Agarwal, A. Rathi, and K.A. Subudhi. Multi-response optimization of the thrust force, torque and surface roughness in drilling of glass fiber reinforced polyester composite using GRA-RSM. Materials Today: Proceedings, 19:333–338, 2019. doi: 10.1016/j.matpr.2019.07.608.
- [33] T. Miyake, K. Mukae, and M. Futamura. Evaluation of machining damage around drilled holes in a CFRP by fiber residual stresses measured using micro-Raman spectroscopy. Mechanical Engineering Journal, 3(6):1–16, 2016. doi: 10.1299/mej.16-00301.
- [34] G.V.G. Rao, P. Mahajan, and N. Bhatnagar. Micro-mechanical modeling of machining of FRP composites – Cutting force analysis. Composites Science and Technology, 67(3–4):579–593, 2007. doi: 10.1016/j.compscitech.2006.08.010.
- [35] R.K. Verma, K. Abhishek, S. Datta, P.K. Pal, and S.S. Mahapatra. Multi-response optimization in machining of GFRP (epoxy) composites: An integrated approach. Journal for Manufacturing Science and Production, 15(3):267–292, 2015. doi: 10.1515/jmsp-2014-0054.
- [36] K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/14786440109462720.
- [37] D. Zhao, H. Qi, and J. Pan. A predication analysis of the factors influencing minimum ignition temperature of coal dust cloud based on principal component analysis and support vector machine. Archives of Mining Sciences, 64(2):335–350, 2019. doi: 10.24425/ams.2019.128687.
- [38] M. Ukamanal, P.C. Mishra, and A.K. Sahoo. Effects of spray cooling process parameters on machining performance AISI 316 steel: a novel experimental technique. Experimental Techniques, 44(1):19–36, 2020. doi: 10.1007/s40799-019-00334-y.
- [39] G. Karuna Kumar, C. Maheswara Rao, and V.V.S. KesavaRao. Application of WPCA & CQL methods in the optimization of mutiple responses. Materials Today: Proceedings, 18:25–36, 2019. doi: 10.1016/j.matpr.2019.06.273.
- [40] D. Das, P.C. Mishra, S. Singh, A.K. Chaubey, and B.C. Routara. Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization. International Journal of Industrial Engineering Computations, 9(4):551–564, 2018. doi: 10.5267/j.ijiec.2017.10.001.
- [41] S.D. Mohanty, S.S. Mahapatra, and R.C. Mohanty. PCA based hybrid Taguchi philosophy for optimization of multiple responses in EDM. SADHANA, 44(1):1–9, 2019. doi: 10.1007/s12046-018-0982-z.
- [42] U.A. Khashaba. Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3–4):313–327, 2004. doi: 10.1016/S0263-8223(03)00180-6.
- [43] L. Gemi, S. Morkavuk, U. Köklü, and D.S. Gemi. An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Composites Part B: Engineering, 172:186–194, 2019. doi: 10.1016/j.compositesb.2019.05.023.
- [44] L. Li, C. Yan, H. Xu, D. Liu, P. Shi, Y. Zhu, G. Chen, X. Wu, and W. Liu. Improving the interfacial properties of carbon fiber–epoxy resin composites with a graphene-modified sizing agent. Journal of Applied Polymer Science, 136(9):1–10, 2019. doi: 10.1002/app.47122.
- [45] U. Aich, R.R. Behera, and S. Banerjee. Modeling of delamination in drilling of glass fiberreinforced polyester composite by support vector machine tuned by particle swarm optimization. International Journal of Plastics Technology, 23(1):77–91, 2019. doi: 10.1007/s12588-019- 09233-8.
- [46] D. Kumar and K.K. Singh. Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite. Journal of Materials: Design and Applications, 233(4):647–663, 2019. doi: 10.1177/1464420717692369.
- [47] P. Kyratsis, A.P. Markopoulos, N. Efkolidis, V. Maliagkas, and K. Kakoulis. Prediction of thrust force and cutting torque in drilling based on the response surface methodology. Machines, 6(2):24, 2018. doi: 10.3390/MACHINES6020024.
- [48] C.C. Tsao. Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP). The International Journal of Advanced Manufacturing Technology, 37(1–2):23–28, 2008. doi: 10.1007/s00170-007-0963-6.
- [49] A.M. Abrão, J.C.C. Rubio, P.E. Faria, and J.P. Davim. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2):508–513, 2008. doi: 10.1016/j.matdes.2007.01.016.
- [50] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi: 10.1007/s40032-020-00563-w.
- [51] S.Y. Park, W.J. Choi, C.H. Choi, and H.S. Choi. Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate. Composite Structures, 185:684–698, 2018. doi: 10.1016/j.compstruct.2017.11.073.
- [52] R. Świercz, D. Oniszczuk-Świercz, J. Zawora, and M. Marczak. Investigation of the influence of process parameters on shape deviation after wire electrical discharge machining. Archives of Metallurgy and Materials, 64(4):1457–1462, 2019. doi: 10.24425/amm.2019.130113.
- [53] K. Palanikumar. Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Materials and Manufacturing Processes, 25(10):1059–1067, 2010. doi: 10.1080/10426910903575830.
- [54] S.K. Rathore, J. Vimal, and D.K. Kasdekar. Determination of optimum parameters for surface roughness in CNC turning by using GRA-PCA. International Journal of Engineering, Science and Technology, 10(2):37–49, 2018. doi: 10.4314/ijest.v10i2.5.
- [55] A. Gok. A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement, 70:100–109, 2015. doi: 10.1016/j.measurement.2015.03.037.
- [56] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive of Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
- [57] B.A. Rezende, F. de Castro Magalhães, and J.C. Campos Rubio. Study of the measurement and mathematical modelling of temperature in turning by means equivalent thermal conductivity. Measurement, 152:107275, 2020. doi: 10.1016/j.measurement.2019.107275.
- [58] A. Bhattacharya, S. Das, P. Majumder, and A. Batish. Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Production Engineering, 3(1):31–40, 2009. doi: 10.1007/s11740-008-0132-2.
- [59] A. Taşkesen and K. Kütükde. Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement, 47:321–330, 2014. doi: 10.1016/j.measurement.2013.08.040.
- [60] B.B. Nayak, K. Abhishek, S.S. Mahapatra, and D. Das. Application of WPCA based Taguchi method for multi-response optimization of abrasive jet machining process. Materials Today: Proceedings, 5(2):5138–5144, 2018. doi: 10.1016/j.matpr.2017.12.095.
- [61] K. Palanikumar, L. Karunamoorthy, and N. Manoharan. Mathematical model to predict the surface roughness on the machining of glass fiber reinforced polymer composites. Journal of Reinforced Plastics and Composites, 25(4):407–419, 2006. doi: 10.1177/0731684405060568.
- [62] R. Świercz, D. Oniszczuk-Świercz, and L. Dabrowski. Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering, 65(4):461–476, 2018. doi: 10.24425/ame.2018.125437.
- [63] A. Hamdi, S.M. Merghache, and T. Aliouane. Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive of Mechanical Engineering, 67(1):73–95, 2020. doi: 10.24425/ame.2020.131684.
- [64] V. Kavimani, K.S. Prakash, and T. Thankachan. Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Composites Part B: Engineering, 167:621–630, 2019. doi: 10.1016/j.compositesb.2019.03.031.
- [65] Y. Quan and L. Sun. Investigation on drilling-induced delamination of CFRP with infiltration method. Advanced Materials Research, 139–141:55–58, 2010. doi: 10.4028/www.scientific.net/AMR.139-141.55.
- [66] O. Isbilir and E. Ghassemieh. Delamination and wear in drilling of carbon-fiber reinforced plastic composites using multilayer TiAlN/TiN PVD-coated tungsten carbide tools. Journal of Reinforced Plastics and Composites, 31(10):717–727, 2012. doi: 10.1177/0731684412444653.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90c14868-94c3-429f-81c1-3e033d46decf