Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 2 nd EAA International Symposium on Hydroacoustics 24-27 May 1999, Gdańsk-Jurata POLAND
Języki publikacji
Abstrakty
The fractal dimension of received echo envelope is a useful parameter in a sea bottom classification procedure. As fractal structure of bottom is believed to transfer onto the shape of echo envelope, fractal dimension may describe properly some physical features of seabed, as surface roughness or complexity of layered structure. The paper presents and compares the results of two methods of fractal dimension calculation from echo envelope given as finite set of discrete values. The first method evaluates box dimension and the second is based on the relation between fractal dimension and Lipschitz exponent, which describes some properties of autocorrelation junction of investigated signal. The obtained results show that at least one type of fractal dimension method may be useful in a sea bottom recognition task.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
107--112
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Technical University of Gdańsk, Acoustics Department, ul. Narutowicza 11/12, 80-952 Gdańsk, POLAND
autor
- Technical University of Gdańsk, Acoustics Department, ul. Narutowicza 11/12, 80-952 Gdańsk, POLAND
autor
- Technical University of Gdańsk, Acoustics Department, ul. Narutowicza 11/12, 80-952 Gdańsk, POLAND
Bibliografia
- [1] A. Caiti, R. Zoppoli, Seafloar parameters identification from parametric sonar data, Proceedings of the 4 th European Symposium on Underwater Acoustics, Rome, pp. 307-312, (1998).
- [2] R. C. Chivers, N. Emerson, D. R. Bums, New acoustic processing for underway surveying, The Hydrographic Journal 56, pp. 8-17, (1990).
- [3] C. Dyer, K. Murphy, G. Heald, N. Pace, An experimental study of sediment discrimination using 1st and 2nd echoes, Saclantcen Conference 112 Proceedings Series CP-45, High Frequency Acoustics in Shallow Water, La Spezia, pp. 139- 146, (1990).
- [4] H. M. Hastings, G. Sugihara, Fractals. A user's guide for the natural sciences, Oxford, New York, Tokyo: Oxford University Press, 1994, pp. 7-77.
- [5] Z. Klusek, A. Śliwiński, J. Tęgowski, Characteristic properties of bottom backscattering in the South Baltic Sea, Proceedings of the 2 nd European Conference on Underwater Acoustics, Copenhagen, pp. 105-110, (1994).
- [6] Z. Łubniewki, A. Stepnowski, Application of the fractal analysis in the sea bottom recognition, Archives of Acoustics 23, 4, pp. 499-511, (1998).
- [7] Z. Łubniewski, A. Stepnowski, Sea bottom recognition using fractal analysis and scattering impulse response, Proceedings of the 4th European Conference on Underwater Acoustics, Rome, pp. 179-184, (1998).
- [8] J. Maciołowska, A. Stepnowski, T. V. Dung, Fish schools and seabed identification using neural networks and fuzzy logic cIassifiers, Proceedings of the 4 th European Conference on Underwater Acoustics, Rome, pp. 275-280, (1998).
- [9] B. B. Mandelbrof, The fractal geometry of nature, San Francisco: Freeman, 1982.
- [10] E. Pouliquen, X. Lurton, Sea-bed identification using echosounder signal, European Conference on Underwater Acoustics, London and New York, pp. 535-538, (1992).
- [11] anon., Quester Tangent: Quester Tangent QTC VIEW Digital Approach to Seabed Classification; http://www.questercorp.com /qtcview.htm, (1997).
- [12] A. Stepnowski, M. Moszyński, R. Komendarczyk, J. Burczyński, Visual real-time Bottom Typing System (VBTS) and neural networks experiment for sea bed classification, Proceedings of the 3 rd European Conference on Underwater Acoustics, Heraklion, pp. 685-690, (1996).
- [13] D. D. Sternlicht, C. de Moustier, Temporal modelling of high frequency (30 - 100 kHz) acoustic seafloor backscatter: shallow water results, Saclantcen Conference Proceedings Series CP-45 , High Frequency Acoustics in ShallowWater, La Spezia, pp. 509-516, (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90b361a0-6e0f-48a9-8478-50261b5fc0fa