PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Plastic Responses in Tree Architecture to Different Light Intensity Habitats : A Case of Chinese Cork Oak

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The capacity of plants to occupy different habitats is made possible by the plastic responses of their presenting in heterogeneous habitats. Light directly influences the plastic responses of plant architectural traits. We measured five years-old saplings of Chinese cork oak growing in different light intensity habitats (forest edge, forest gap and understory). A suite of architectural and leaf morphological attributes indicated a pronounced ability of Chinese cork oak to adapt to shade. Under low light intensity habitats, Chinese cork oak had a significant tendency to invest more in crown growth, characterized by the highest crown area, the lowest crown length ratio and the largest angle of the inclination of the main stem to the vertical. It expressed marked plagiotropic growth in shade indicating a horizontal light-foraging strategy. In addition, Chinese cork oak significantly exhibited the highest specific leaf area and the lowest total leaf area under low light intensity habitats. In shade, they showed some plasticity in displaying most of their leaf area at the top of the crown to minimize self-shading and to enhance light interception. This differentiation can be defined as a plastic phenomenon, likely related to the higher efficiency of light interception and absorption by saplings.
Rocznik
Strony
500--508
Opis fizyczny
Bibliogr. 46 poz., mapa, tab., wykr.
Twórcy
autor
  • Key Comprehensive Laboratory of Forestry in Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Agriculture College of Shihezi University, Shihezi 832000, Xinjiang, China
autor
  • Key Comprehensive Laboratory of Forestry in Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
autor
  • Key Comprehensive Laboratory of Forestry in Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
Bibliografia
  • [1] Bartelink H. H. 1997 — Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L) — Ann. For. Sci. 54: 39–50.
  • [2] Barthod S., Epron D. 2005 — Variations of construction cost associated to leaf area renewal in saplings of two co-occurring temperate tree species Acer platanoides L. and Fraxinus excelsior L. along a light gradient — Ann. Sci. 62: 545–551.
  • [3] Beaudet M., Messier C. 1998 — Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient — Can. J. For. Res. 28: 1007–1015.
  • [4] Bonosi L. 2006 — The influence of light and size on photosynthetic performance, light interception, biomass partitioning and tree arhitecture in open grown Acer pseudoplatanus, Fraxinus excelsior and Fagus sylvatica seedlings — Schriftenreihe Freiburger forstliche. Forschung: 34 pp .
  • [5] Borchert R., Slade N. A. 1981 — Bifurcation ratios and the adaptive geometry of trees — Bot. Gaz. 142: 394–401.
  • [6] Canham C. D. 1988 — Growth and canopy architecture of shade-tolerant tress: response to canopy gaps — Ecology, 69: 786–795.
  • [7] Cheng X. B., Wu J., Han S. J., Zhou Y. M., Wang X. X., Wang C. G., Zhao J., Hu Q. H. 2012 — Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest — Photosynthetica, 50: 56–66.
  • [8] Davies S. J., Ashton P. S. 1999 — Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo — Am. J. Botany. 86: 1786–1795.
  • [9] Falster D. S., Westoby M. 2005 — Alternative height strategies among 45 dicot rain forest species from tropical Queensland — Aust. J. Ecol. 93: 521–535.
  • [10] Falster D. S., Westoby M. 2003 — Leaf size and angle vary widely across species: what consequences for light absorption? — New Phyto. 158: 509–525.
  • [11] Feng D. J., Zhang W. H., Zhao J. F., Zhang Y. J., Lei Y. F. 2014 — [Structures and properties of different natural Quercus variabilis woods in Shaanxi] — J. Northwest Sci.-Tech. Univ. Agric. For. (Nat. Sci. Ed.). 42: 93–98 (in Chinese).
  • [12] Giancarlo A. F., Jamir A. P. J., Ivan S. C. M. 2013 — Plastic responses in tree architecture and specific leaf area of Xylopia aromatica (Annonaceae): adaptations to environments with different light intensities — Braz. J. Bot. 36: 279–283.
  • [13] Givnish T. J. 1988 — Adaptation to sun and shade: a whole plant perspective — Aust. J. Plant Physiol. 15: 63–92.
  • [14] Givnish T. 1984 — Leaf and canopy adaptations in tropical forests (In: Physiological Ecology of Plants of the Wet Tropics, Eds: E. Medina, H. Mooney, C. Vazquez-Yanes) — Springer Netherlands, The Hague, pp. 51–84.
  • [15] Kimmins J.P. 1997 — Forest ecology - a foundation for sustainable management — Prentice Hall, Upper Saddle River. 596 pp.
  • [16] King D. A. 1990 — Allometry of saplings and understory trees of a Panamanian forest — Funct. Ecol. 4 : 27–32.
  • [17] Kohyama T. 1987 — Significance of architecture and allometry in saplings — Funct. Ecol. 1: 399–404.
  • [18] Kunstler G., Curt T., Bouchaud M., Lepart J. 2005 — Growth, mortality, and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest — Can. J. For. Res. 35: 1657–1668.
  • [19] Kuppers M., Timm H., Orth F., Stegemann J., Stober R., Schneider H., Paliwal K., Karunaichamy K., Ortiz R. 1996 — Effects of light environment and successional status on lightfleck use by understory trees of temperate and tropical forests — Tree Physiol. 16: 69–80.
  • [20] Ma L. W., Zhang W. H., Xue Y. Q., Ma C., Zhou J. Y. 2013 — [Growth characteristics and influencing factors of Quercus variabilis seedlings on the north slope of Qinling Mountains] — Sci. Silv. Sin. 49: 43–50 (in Chinese).
  • [21] Mallik A. U., Kreutzweiser D. P., Spalvieri C. M., Mackereth R. W. 2013 — Understory plant community resilience to partial harvesting in riparian buffers of central Canadian boreal forests — For. Ecol. Manage. 289: 209–218.
  • [22] Messier C., Nikinmaa E. 2000 — Effects of light availability and sapling size on the growth, biomas allocation, and crown morphology of understory sugar maple, yellow birch, and beech — Ecoscience, 7: 345–356.
  • [23] Monteith J. L., Unsworth M. H. 1990 — Principles of environmental physics — Edward Arnold, London, 56 pp.
  • [24] Paquette A., Bouchard A., Cogliastro A. 2007 — Morphological plasticity in seedlings of three decidous species under shelterwood under-planting management does not correspond to shade tolerance ranks — For. Ecol. Manage. 241: 278–287.
  • [25] Pearcy R. W., Valladares F., Wright S. J., Lasso E. 2004 — A functional analysis of the crown architecture of tropical forest Psychotria species: do species vary in light capture efficiency and consequently in carbon gain and growth? — Oecologia, 139: 163–167.
  • [26] Pearcy R. W. 2007 — Responses of Plants to Heterogeneous Light Environments (In: Functional plant ecology, Eds: F. I. Pugnaire, F. Valladares) — CRC Press, Boca Raton, pp. 232–238.
  • [27] Perry M. A., Mitchell R. K., Zutter B. R., Glover G. R., Gjerstad D. H. 1993 — Competitive responses of loblolly pine to gradients in loblolly pine, sweet gum and brooms edge densities — Can. J. For. Res. 23: 2049–2058.
  • [28] Petritan A. M., Lüpke B., Petritan I. C. 2009 — Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings — Eur. J. Forest Res. 128: 61–74.
  • [29] Poorter L., Bongers F., Sterck F. J., Wöll H. 2003 — Architecture of 53 rain forest tree species differing in adult stature and shade tolerance — Ecology, 84: 602–608.
  • [30] Poorter L., Bongers L., Bongers F. 2006 — Architecture of 54 moist forest tree species: traits, trade-offs, and functional groups — Ecology, 87: 1289–1301.
  • [31] Poorter L., Paz H., Wright S. J., Ackerly D. D., Condit R., Ibarra-Manriquez G., Harms K. E., Licona J. C., Martínez-Ramos M., Mazer S. J., Muller-Landau H. C., Peña-Claros M., Webb C. O., Wright I. J. 2008 — Are functional traits good predictors of demographic rates? Evidence from five neotropical forests — Ecology, 89: 1908–1920.
  • [32] Portsmuth A., Niinemets Ü.2007 — Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance — Funct. Ecol. 21: 61–77.
  • [33] Schmitt H. P., Mertens B., Lüpke B. 1995 — Buchenvoranbau im Stadtwald Meschede — Allg Forst. Jagdztg. 50: 1071–1075.
  • [34] Sprugel D. G., Hinckley T. M., Schaap W. 1991 — The Theory and Practice of Branch Autonomy — Annu. Rev. Ecol. Syst. 22: 309–334.
  • [35] Stancioiu P. T, O'Hara K. L. 2006 — Morphological plasticity of regeneration subject to different levels of canopy cover in mixed-species, multiaged forests of the Romanian Carpathians — Trees, 20: 196–209.
  • [36] Sterck F. J., Bongers F., Newbery D. M. 2001 — Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns — Plant Ecol. 153: 279–292.
  • [37] Sun S. C., Chen L. Z. 1999 — [The architecture variation of Quercus liaotungensis in different habitats] — Acta Ecol. Sin. 19: 359–364 (in Chinese).
  • [38] Thomas S. C.1996 — Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees — Am. J. Botany. 83: 556–566.
  • [39] Valladares F., Niinemets U. 2007 — The architecture of plant crowns: from design rules to light capture and performance (In: Functional plant ecology, Eds: F. I. Pugnaire, F. Valladares), 2nd edn. CRC Press, Boca Raton, pp. 115–116.
  • [40] Valladares F., Niinemets U. 2008 — Shade tolerance, a key plant feature of complex nature and consequences — Ann. Rev. Ecol. Syst. 39: 237–257.
  • [41] Voβ S. 2005 — Biomasseproduktion und morphologische Plastizitat junger Eichen bei Konkurrenzbelastung durch unterschiedlich dichte Altholzschirme — Berichte des Forschungszentrums Wald osysteme der Universitat Gettingen, Reihe A, Band. 194 pp.
  • [42] Wright S. J., Jaramillo M. A., Pavon J., Condit R., Hubbell S. P., Foster R. B. 2005 — Reproductive size thresholds in tropical trees: variation among individuals, species and forests — Trop. Ecol. 21: 307–315.
  • [43] Wright S. J., Kitajima K., Kraft N. J., Reich P. B., Wright I. J., Bunker D. E., Condit R., Dalling J. W., Davies S. J., Díaz S., Engelbrecht B. M. J., Harms K. E., Hubbell S. P., Marks C. O., Ruiz-Jaen M. C., Salvador C. M., Zanne A. E. 2010 — Functional traits and the growth-mortality trade-off in tropical trees — Ecology, 91: 3664–3674.
  • [44] Wu M., Zhang W. H., Zhou J. Y., Ma C., Ma L. W. 2013 — [Seedling regeneration and affecting factors of Quercus variabilis in different distribution regions] — Chin. J. Appl. Ecol. 24: 2106–2114 (in Chinese).
  • [45] Zhang W. H., Lu Z. J. 2002 — [A study on the biological and ecological property and geographical distribution of Quercus variabilis population] — Acta Bot. Bor-Occid. Sin. 22: 1093–1101 (in Chinese).
  • [46] Zhou J. Y, Lin J, He J. F., Zhang W. H. 2010 — [Review and perspective on Quercus variabilis research] — J. NW. Fore. Uni. 25: 43–49 (in Chinese).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90b163ab-0f55-4880-a868-3384ae8d0712
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.