PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geopolymer mortar incorporating high calcium fly ash and silica fume

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An attempt was made in the present work to study the compressive strength and microstructure of geopolymer containing high calcium fly ash (HCFA) and silica fume. Concentration of sodium hydroxide solution 8M, 10M, 12M & 14M, liquid to binder ratio 0.5 and sodium hydroxide to sodium silicate ratio 2.5 were selected for the mixes. Geopolymer mortar test results indicated that the mix with 40% silica fume by the weight of HCFA yielded higher compressive strength under ambient curing. The XRD pattern typically shows the major portion of amorphous phase of geopolymer. The existence of C-A-S-H gel, N-A-S-H gel and hydroxysodalite gel products were observed through SEM which developed dense microstructure and thus enhanced strength of HCFA and silica fume geopolymer.
Twórcy
autor
  • College of Engineering, Dept. of Civil Engineering, Tamil Nadu, India
autor
  • College of Engineering, Dept. of Civil Engineering, Tamil Nadu, India
Bibliografia
  • 1. Prakash R. Voraa, Urmil V. Dave, “Parametric Studies on Compressive Strength of Geopolymer Concrete”, Procedia Engineering 51: 210 - 219, 2013.
  • 2. Mohammed BS, Fang OC, “Mechanical and durability properties of concretes containing paper-mill residuals and fly ash”, Construction and Building Materials 25:717-725, 2011.
  • 3. Lateef N. Assi, Edward (Eddie) Deaver, Mohamed K. El Batanouny, Paul Ziehl, “Investigation of early compressive strength of fly ash-based geopolymer Concrete”, Construction and Building Materials 112: 807-815, 2016.
  • 4. Daniel L.Y. Kong, Jay G. Sanjayan, Kwesi Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures”, Cement and Concrete Research 37: 1583-1589, 2007.
  • 5. Prakash R. Vora, Urmil V. Dave, “Parametric Studies on Compressive Strength of Geopolymer Concrete”, Procedia Engineering 51: 210 - 219, 2013.
  • 6. Rohit Zende, Mamatha. A., “Study on Fly Ash and GGBS Based Geopolymer Concrete under Ambient Curing”, Journal of Emerging Technologies and Innovative Research 2 (7) (2015) 3082-3087.
  • 7. Shadi Riahi, Ali Nazari, “The effects of nanoparticles on early age compressive strength of ash-based geopolymers”, Ceramics International 38: 4467-4476, 2012.
  • 8. Partha Sarathi Deb, Pradip Nath, Prabir Kumar Sarker, “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature”, Materials and Design (2014), doi: http://dx.doi.org/10.1016/j.matdes.2014.05.001.
  • 9. Chien-Chung Chen, Ivan Diaz, Kathleen Menozzi, Luis Murillo, “An experimental study on slag/fly ash-based geopolymer concrete”, Proceedings of ISER 11th International Conference, San Francisco, USA, 26-30, 2015.
  • 10. Ashley Russell Kotwal, Yoo Jae Kim, Jiong Hu, Vedaraman Sriraman, “Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash”, International Journal of Concrete Structures and Materials 9 (1): 35-43, 2015.
  • 11. J. Temuujin, R.P. Williams, A. van Riessen, “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature”, Journal of Materials Processing Technology 209: 5276-5280, 2009.
  • 12. B. Vijaya Rangan, “Fly Ash-Based Geopolymer Concrete, Proceedings of the International Workshop on Geopolymer Cement and Concrete”, Allied Publishers Private Limited, Mumbai, India, 68-106, 2010.
  • 13. Xueying Li, Xinwei Ma, Shoujie Zhang, Enzu Zheng, “Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar”, Materials 6: 1485-1495, 2013. doi:10.3390/ma6041485.
  • 14. Guo, X.L. Shi, H.S. Dick, W.A., “Compressive strength and microstructural characteristics of class C fly ash geopolymer”, Cement Concrete Composites 32: 142-147, 2010.
  • 15. Kolli Ramujee, Potharaju M., “Development of Low Calcium Flyash Based Geopolymer Concrete”, IACSIT International Journal of Engineering and Technology 6(1): 1-4, 2014.
  • 16. R.Manickavasagam, G.Mohan kumar, “Short term properties of High Calcium Flyashbased Geopolymer binder”, IOSR Journal of Mechanical and Civil Engineering 14 (1) III: 13-20, Jan. - Feb. 2017.
  • 17. V.Revathi, R.Saravanakumar, J.Thaarrini, “Effect of molar ratio of SiO2/Na2O, Na2SiO3/NaOH ratio and curing mode on the compressive strength of ground bottom ash geopolymer mortar”, International Journal of Earth Sciences and Engineering 7 (4): 1511-1516, 2014.
  • 18. Eslam Gomaa, Simon Sargon, Cedric Kashosi, Mohamed ElGawady, “Fresh properties and compressive strength of high calcium alkali activated fly ash mortar”, Journal of King Saud University – Engineering Sciences 29: 356-364, 2017.
  • 19. Xiaolu Guo, Huisheng Shi, Warren A. Dick, “Compressive strength and micro-structural characteristics of class C fly ash Geopolymer”, Cement & Concrete Composites, 32: 142-147, 2010.
  • 20. Kong, D.L.Y., Sanjayan, J.G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement Concrete Research 40: 334-339, 2010.
  • 21. Manjunath S. Sontakki, Swapnil B. Cholekar, “Strength Performance Studies on Ambient Cured Silica fume based Geopolymer Concrete”, International Research Journal of Engineering and Technology 2(7): e-ISSN: 2395-0056, p-ISSN: 2395-0072, 2015.
  • 22. D.R.M. Brew, K.J.D. MacKenzie, “Geopolymer synthesis using silica fume and sodium aluminate”, Journal of Material Sciences, 42: 3990-3993, 2007.
  • 23. Khater HM, El-Sabbagh BA, Fanny M, Ezzat M, Lottfy M, “Effect of nano-silica on alkali activated water cooled slag geopolymer”, ARPN Journal of Engineering and Applied Sciences 2 (2012) 170-176.
  • 24. Riahi S, Nazari A, “The effects of nano particles on early age compressive strength of ash-based geopolymers”, Ceramics International 38: 4467-76, 2012.
  • 25. Ping Duan, Chunjie Yan, Wei Zhou, “Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle”, Cement and Concrete Composites 78 (2017) 108-119.
  • 26. Antonia, Lucky Chandraa, Djwantoro Hardjitoa, “The impact of using fly ash, silica fume and calcium carbonate on the workability and compressive strength of mortar”, Procedia Engineering 125: 773 - 779, 2015.
  • 27. M. Rostami, K. Behfarnia, “The effect of silica fume on durability of alkali activated slag concrete”, Construction and Building Materials 134: 262-268, 2017.
  • 28. Suresh Thokchom, Debabrata Dutta, Somnath Ghosh, “Effect of Incorporating Silica Fume in Fly Ash Geopolymers, International Journal of Civil and Environmental Engineering 5(12): 750-754, 2011.
  • 29. F.N. Okoye, J. Durgaprasad, N.B. Singh, “Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete”, Ceramics International, http://dx.doi.org/10.1016/j.ceramint.2015.10.084
  • 30. A.M. Rashad, S.R. Zeedan, “A preliminary study of blended pastes of cement and quartz powder under the effect of elevated temperature”, Construction Building Materials 29: 672-681, 2012..
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90b0baea-d52c-4cdc-b0bd-c79044cc817a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.