PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Technical solutions for bio-measurements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological processes are controlled automatically. Registration of signals and measuring their relative strength is hence a key problem. Receptors may be relatively simple or complex. The complexity is the direct response to ambiguity of signals. If there is however a common feature of diverse signals a construction of generic receptor mechanism is usually observed. Combinatorial technique is commonly used in biological systems to decrease the complexity in reception of highly ambiguous signals.
Słowa kluczowe
Rocznik
Strony
339--349
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Chair of Medical Biochemistry – Medical College – Jagiellonian University, Kopernika 7, 31-034 Krakow, Poland
  • Jagiellonian University, Faculty of Mathematics and Computer Science, Łojasiewicza 6, 30-348 Kraków, Poland
autor
  • Department of Measurements and Instrumentation, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Department of Bioinformatics and Telemedicine, Medical College – Jagiellonian University, Łazarza 16, 31-530 Krakow, Poland
Bibliografia
  • 1. Kawaguchi S, Ng DTW. (2011) Sensing ER stress. Science 333, 1830-1831.
  • 2. Gardner BM, Walter P. (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891-1894.
  • 3. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P. (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687-693.
  • 4. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, LaVail MM, Walter P. (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944-946.
  • 5. Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, Jairajpun MA. (2011) Serpin inhibition mechanism: A delicate balance between native metastable state and polymerization. J. Amino Acids 2011, ID 606797 10 pages
  • 6. Kuper J, Kisker C. (2012) Damage recognition in nucleotide excision DNA repair. Curr Op Struct Biol 22, 88-93.
  • 7. Gagné J-P, Rouleau M, Poirier GG. (2012) PARP-1 activation – bringing the pieces together. Science 336, 678-679
  • 8. Petrini JH. (2007) A touching response to damage. Science 316, 1138-1139.
  • 9. Neale MJ, Pan J, Keeney S. (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1056.
  • 10. Berg JM, Tymoczko JL, Stryer L, Clarke ND. (2002) Biochemistry Ed W.H. Freeman and Company, New York p 235, 284-289.
  • 11. Hatt H. (2004) Molecular and cellular basis of human olfaction. Chem. & Biodiver. 1, 1857-1869.
  • 12. Pilpel Y, Lancet D. (1999) The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Science 8, 969-977.
  • 13. Chaudhuri J, Jasin M. (2007) Antibodies get a break. Science 315, 335-336.
  • 14. Zarrin AA, Del Vecchio C, Tseng E, Gleason M, Zarin P, Tian M, Alt FW. (2007) Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 315, 377-381.
  • 15. Breer H. (2003) Olactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem. 377, 427-433.
  • 16. Berne RM, Levy MN. (1983) Physiology Ed. The C.V. Mosby Copany – St. Louis, Toronto, pp 105-115.
  • 17. Herberstein ME, Kemp DJ. (2012) A clearer view from fuzzy images. Science 335, 409-410
  • 18. Gardner KH, Correa F. (2012) How plants see the invisible. Science 335, 1451-1452.
  • 19. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED. (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335, 1492-1496.
  • 20. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang H, Deng XW, Shi Y. (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214-219.
  • 21. Gallivan JP, Dougherty DA. (1999) Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459-9464.
  • 22. Bass J, Takahashi JS. (2010) Circadian integration of metabolism and energetics. Science 330, 1349-1354.
  • 23. Sehgal A. (2004) Molecular Biology of Circadian Rhythms. Ed. Wiley-Liss
  • 24. Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R. (2011) Early gamma oscillations synchronize developing thalamus and cortex. Science, 334, 226-228.
  • 25. Riedel-Kruse IH, Müller C, Oates AC. (2007) Synchrony dynamics during initiation, failure and rescue of the segmentation clock. Science 317, 1911-1915.
  • 26. Kath WL, Ottino JM. (2007) Rhythm engineering. Science 316, 1857-1858.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90abe654-d802-4098-bcc5-289a307ea225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.